
In bioinformatics, FASTA and FASTQ files are ubiquitous formats for storing sequence data.

While there are existing Perl modules for parsing these formats (such as BioPerl's Bio::SeqIO),

they can be slow when processing large datasets. In this tutorial, we'll create a high-

performance Perl module for parsing FASTA/FASTQ files by leveraging kseq.h, a fast C library

by Heng Li.

kseq.h is a lightweight, standalone C library that provides efficient parsing of FASTA and FASTQ

formats. It's part of the klib library (https://github.com/attractivechaos/klib), which offers various

high-performance bioinformatics tools. By using Perl's XS mechanism, we can create a bridge

between Perl and this C library, allowing us to benefit from C's speed while maintaining Perl's

ease of use.

This tutorial assumes you have:

Before diving into the implementation, let's review the formats we're working with:

FASTA is a simple text-based format for representing nucleotide or protein sequences:

Example:

>seq1 Description of sequence 1
ACGTACGTACGTACGT
>seq2 Description of sequence 2
GCATGCATGCATGCAT

Creating a Fast FASTA/FASTQ Parser in Perl with
XS and kseq.h

Introduction

Basic knowledge of Perl

Basic understanding of C

Familiarity with the FASTA and FASTQ formats

A development environment with a C compiler and Perl installed

Understanding FASTA and FASTQ Formats

FASTA Format

Each sequence begins with a header line starting with ">" followed by an identifier and

optional description

The sequence data follows on subsequent lines

Multiple sequences can be stored in a single file

https://github.com/attractivechaos/klib

FASTQ extends FASTA to include quality scores for each nucleotide:

Example:

@seq1 Description of sequence 1
ACGTACGTACGT
+
!''*((((***+
@seq2 Description of sequence 2
GCATGCATGCAT
+
IIIIIIIIIII?

kseq.h is a C library that provides fast parsing of FASTA and FASTQ files. It has several

important features:

kseq.h uses a few key data structures:

The library is heavily macro-based, which can make it a bit challenging to understand at first,

but this is what allows it to be so flexible and efficient.

Let's start by creating the directory structure for our Perl module. We'll name our module

Bio::FASTX::Parser:

mkdir -p Bio-FASTX-Parser/lib/Bio/FASTX
mkdir -p Bio-FASTX-Parser/t

FASTQ Format

Each entry consists of four lines:

1. A header line starting with "@" followed by an identifier and optional description

2. The sequence data

3. A line starting with "+" (optionally followed by the same identifier)

4. Quality scores encoded as ASCII characters

Understanding kseq.h

It can parse both FASTA and FASTQ formats, even mixed in the same file

It works with gzipped files when used with zlib

It's extremely fast due to careful buffering and memory management

It's header-only, making it easy to include in other projects

kstring_t: A dynamic string structure to store sequence data

kstream_t: A buffered stream reader

kseq_t: The main sequence structure that holds name, sequence, quality, etc.

Setting Up the Module Structure

cd Bio-FASTX-Parser

First, let's download kseq.h:

curl -o kseq.h https://raw.githubusercontent.com/attractivechaos/klib/master/kseq.h

Now, let's create the basic files needed for our module:

This is the file that will set up the build process for our module:

use 5.010;
use strict;
use warnings;
use ExtUtils::MakeMaker;

Check for zlib
my $zlib_found = 0;
foreach my $path (qw(/usr/local /usr)) {
 if (-f "$path/include/zlib.h" && (-f "$path/lib/libz.so" || -f "$path/lib/libz.dylib"
 $zlib_found = 1;
 last;
 }
}

if (!$zlib_found) {
 warn "Warning: zlib headers and/or library not found. You need to install zlib develo
 warn "For Debian/Ubuntu: sudo apt-get install zlib1g-dev\n";
 warn "For CentOS/RHEL: sudo yum install zlib-devel\n";
 warn "For macOS: brew install zlib\n";
 exit 0;
}

Write a typemap file
open my $typemap_fh, '>', 'typemap' or die "Could not open typemap file: $!";
print $typemap_fh <<'TYPEMAP';
TYPEMAP
gzFile T_PTROBJ
kseq_t * T_PTROBJ
TYPEMAP
close $typemap_fh;

Define the MakeMaker arguments
WriteMakefile(
 NAME => 'Bio::FASTX::Parser',
 AUTHOR => 'Your Name <your.email@example.com>',
 VERSION_FROM => 'lib/Bio/FASTX/Parser.pm',
 ABSTRACT_FROM => 'lib/Bio/FASTX/Parser.pm',
 LICENSE => 'perl_5',
 MIN_PERL_VERSION => '5.010',
 CONFIGURE_REQUIRES => {
 'ExtUtils::MakeMaker' => '0',

1. Makefile.PL

http://makefile.pl/

 },
 BUILD_REQUIRES => {
 'Test::More' => '0',
 },
 PREREQ_PM => {
 'strict' => '0',
 'warnings' => '0',
 },
 LIBS => ['-lz'],
 INC => '-I.',
 OBJECT => '$(O_FILES)',
 dist => { COMPRESS => 'gzip -9f', SUFFIX => 'gz', },
 clean => { FILES => 'Bio-FASTX-Parser-*' },
);

This Makefile.PL checks for the zlib library (needed for reading gzipped files), creates a

typemap file for the C data types we'll use, and sets up the necessary build parameters.

Next, let's create the Perl module file:

mkdir -p lib/Bio/FASTX

Create lib/Bio/FASTX/Parser.pm:

package Bio::FASTX::Parser;

use 5.010;
use strict;
use warnings;

our $VERSION = '0.01';

require XSLoader;
XSLoader::load('Bio::FASTX::Parser', $VERSION);

1;

__END__

=head1 NAME

Bio::FASTX::Parser - Fast FASTA/FASTQ parser using kseq.h

=head1 SYNOPSIS

 use Bio::FASTX::Parser;

 # Parse a FASTA or FASTQ file (can be gzipped)
 my $parser = Bio::FASTX::Parser->new("sequence.fa.gz");

 # Iterate through all sequences

2. The Perl Module File

http://makefile.pl/

 while (my $seq = $parser->next_seq()) {
 print "Name: $seq->{name}\n";
 print "Sequence: $seq->{seq}\n";

 # Print comment if available
 print "Comment: $seq->{comment}\n" if exists $seq->{comment};

 # Print quality if available (FASTQ)
 print "Quality: $seq->{qual}\n" if exists $seq->{qual};
 }

=head1 DESCRIPTION

Bio::FASTX::Parser is a Perl module for fast parsing of FASTA and FASTQ files
using the kseq.h library from Heng Li's klib. It supports both uncompressed and
gzipped files.

This module provides a simple interface to access sequences from FASTA/FASTQ files
with high performance and low memory usage.

=head1 METHODS

=head2 new(filename)

Creates a new parser object for the specified file. The file can be either a regular
FASTA/FASTQ file or a gzipped file (.gz extension).

=head2 next_seq()

Returns the next sequence from the file as a hash reference with the following keys:

=over 4

=item * name - The sequence identifier (required)

=item * seq - The sequence string (required)

=item * comment - The comment string (optional)

=item * qual - The quality string for FASTQ files (optional)

=back

Returns undef when there are no more sequences to read.

=head1 AUTHOR

Your Name, E<lt>your.email@example.comE<gt>

=head1 COPYRIGHT AND LICENSE

Copyright (C) 2025 by Your Name

This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.

=cut

This file defines the Perl module, loads the XS code using XSLoader, and provides

documentation using POD.

Now let's create the XS file that will bridge Perl and C:

Create Parser.xs in the root directory:

/* FASTA/FASTQ parser using kseq.h */
#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"

#include <zlib.h>
#include "kseq.h"

// Initialize kseq
KSEQ_INIT(gzFile, gzread)

// Helper function to convert a kseq_t record to a Perl hash reference
SV* kseq_to_hash(pTHX_ kseq_t *seq) {
 HV* hash = newHV();

 // Add name, always present
 hv_store(hash, "name", 4, newSVpvn(seq->name.s, seq->name.l), 0);

 // Add sequence, always present
 hv_store(hash, "seq", 3, newSVpvn(seq->seq.s, seq->seq.l), 0);

 // Add comment if present
 if (seq->comment.l)
 hv_store(hash, "comment", 7, newSVpvn(seq->comment.s, seq->comment.l), 0);

 // Add quality if present
 if (seq->qual.l)
 hv_store(hash, "qual", 4, newSVpvn(seq->qual.s, seq->qual.l), 0);

 return newRV_noinc((SV*)hash);
}

MODULE = Bio::FASTX::Parser PACKAGE = Bio::FASTX::Parser
PROTOTYPES: DISABLE

SV*
new(class, filename)
 char* class
 char* filename
 CODE:
 gzFile fp;
 kseq_t *seq;

Writing the XS Code

 // Open the file
 fp = gzopen(filename, "r");
 if (fp == NULL)
 croak("Failed to open file: %s", filename);

 // Initialize kseq
 seq = kseq_init(fp);

 // Create a hash to store our object data
 HV* self = newHV();

 // Store the file pointer and seq object as an IV
 hv_store(self, "_fp", 3, newSViv(PTR2IV(fp)), 0);
 hv_store(self, "_seq", 4, newSViv(PTR2IV(seq)), 0);

 // Bless and return
 RETVAL = sv_bless(newRV_noinc((SV*)self), gv_stashpv(class, 0));
 OUTPUT:
 RETVAL

SV*
next_seq(self)
 SV* self
 CODE:
 HV* hash;
 SV** fp_sv;
 SV** seq_sv;
 gzFile fp;
 kseq_t *seq;
 int ret;

 // Get the hash
 if (!SvROK(self) || SvTYPE(SvRV(self)) != SVt_PVHV)
 croak("Not a blessed hash reference");
 hash = (HV*)SvRV(self);

 // Get the file pointer and seq object
 fp_sv = hv_fetch(hash, "_fp", 3, 0);
 seq_sv = hv_fetch(hash, "_seq", 4, 0);

 if (!fp_sv || !seq_sv)
 croak("Invalid object");

 fp = INT2PTR(gzFile, SvIV(*fp_sv));
 seq = INT2PTR(kseq_t*, SvIV(*seq_sv));

 // Read next sequence
 ret = kseq_read(seq);

 if (ret < 0) {
 // EOF or error
 RETVAL = &PL_sv_undef;
 } else {
 // Convert to hash and return
 RETVAL = kseq_to_hash(aTHX_ seq);

 }
 OUTPUT:
 RETVAL

void
DESTROY(self)
 SV* self
 CODE:
 HV* hash;
 SV** fp_sv;
 SV** seq_sv;
 gzFile fp;
 kseq_t *seq;

 // Get the hash
 if (!SvROK(self) || SvTYPE(SvRV(self)) != SVt_PVHV)
 return;
 hash = (HV*)SvRV(self);

 // Get the file pointer and seq object
 fp_sv = hv_fetch(hash, "_fp", 3, 0);
 seq_sv = hv_fetch(hash, "_seq", 4, 0);

 if (!fp_sv || !seq_sv)
 return;

 fp = INT2PTR(gzFile, SvIV(*fp_sv));
 seq = INT2PTR(kseq_t*, SvIV(*seq_sv));

 // Clean up
 kseq_destroy(seq);
 gzclose(fp);

Let's break down this XS code:

1. Header Files and Initialization:

We include the necessary Perl XS headers (EXTERN.h, perl.h, XSUB.h)

We include zlib.h for working with gzipped files

We include kseq.h, our FASTA/FASTQ parser

We use KSEQ_INIT to initialize kseq with gzFile and gzread

2. Helper Function:

kseq_to_hash converts a kseq_t record to a Perl hash reference

It stores the name, sequence, and optional comment and quality data

3. XSUBs (XS Subroutines):

new: Constructor that opens a file and initializes the parser

next_seq: Reads the next sequence from the file

DESTROY: Destructor that cleans up resources when the object is garbage collected

Let's create a test file to ensure our module works correctly:

Create t/01-basic.t:

#!/usr/bin/env perl
use strict;
use warnings;
use Test::More tests => 10;
use Bio::FASTX::Parser;

Create a test FASTA file
my $fasta_file = "test.fa";
open my $fh, '>', $fasta_file or die "Could not create test file: $!";
print $fh <<'FASTA';
>seq1 This is sequence 1
ACGTACGTACGT
>seq2 This is sequence 2
GTCAGTCAGTCA
FASTA
close $fh;

Test FASTA parsing
my $parser = Bio::FASTX::Parser->new($fasta_file);
ok($parser, "Created parser object for FASTA file");

my $seq1 = $parser->next_seq();
ok($seq1, "Got first sequence");
is($seq1->{name}, "seq1", "Correct sequence name");
is($seq1->{seq}, "ACGTACGTACGT", "Correct sequence");
is($seq1->{comment}, "This is sequence 1", "Correct comment");
ok(!exists $seq1->{qual}, "No quality for FASTA");

my $seq2 = $parser->next_seq();
ok($seq2, "Got second sequence");
is($seq2->{name}, "seq2", "Correct sequence name");
is($seq2->{seq}, "GTCAGTCAGTCA", "Correct sequence");
is($seq2->{comment}, "This is sequence 2", "Correct comment");

my $seq3 = $parser->next_seq();
ok(!defined $seq3, "No more sequences");

Clean up test file
unlink $fasta_file;

done_testing();

This test creates a temporary FASTA file, parses it using our module, and checks that the parsed

data is correct.

Writing Tests

With all the files in place, we can now build and test our module:

perl Makefile.PL
make
make test

If everything goes well, all tests should pass, and we have a working FASTA/FASTQ parser!

Let's look at how our XS module works in more detail:

One of the most important aspects of XS programming is memory management. In our module:

Converting between C and Perl data structures is another key aspect:

Proper error handling is essential in XS modules:

Building and Testing the Module

Understanding How It Works

Memory Management

1. We allocate memory in the new function when we create the parser object.

2. We increment reference counts (SvREFCNT_inc) when necessary to prevent Perl from

prematurely garbage collecting objects.

3. We use newRV_noinc to create references without incrementing the reference count, which is

appropriate when we're transferring ownership to Perl.

4. We properly clean up resources in the DESTROY function, which is called when the object is

garbage collected.

Data Conversion

1. We use PTR2IV and INT2PTR macros to safely convert between C pointers and Perl integers.

2. We use newSVpvn to create new Perl strings from C strings with a known length.

3. We use newHV to create Perl hash references, and hv_store to add key-value pairs to them.

Error Handling

1. We check the return value of gzopen and call croak if it fails.

2. We verify that the self parameter is a blessed hash reference before accessing it.

3. We check the return value of kseq_read and return undef if it's negative (indicating EOF or an

error).

There are several ways we could extend this module:

In this tutorial, we've created a high-performance Perl module for parsing FASTA and FASTQ

files using XS and kseq.h. This approach gives us the speed of C while maintaining the ease of

use of Perl.

Key takeaways:

By using this module instead of pure Perl solutions, you can significantly speed up your

bioinformatics workflows when working with large sequence files.

Extending the Module

1. Add Support for Writing FASTA/FASTQ Files:

Implement functions to write sequences to FASTA or FASTQ files.

2. Add Support for Indexed Access:

Allow random access to sequences in a file using an index.

3. Add Support for More File Formats:

Extend the module to support other sequence formats like SAM/BAM.

4. Optimize for Memory Usage:

Add options to control memory usage, such as limiting the size of sequence buffers.

Conclusion

XS allows us to create Perl modules that use C code for performance-critical operations.

kseq.h is a fast, efficient library for parsing FASTA and FASTQ files.

Proper memory management is crucial in XS modules to avoid leaks and crashes.

Well-designed APIs make it easy to use efficient code from high-level languages.

References

kseq.h: https://github.com/attractivechaos/klib/blob/master/kseq.h

Perl XS documentation: https://perldoc.perl.org/perlxs

FASTA format: https://en.wikipedia.org/wiki/FASTA_format

FASTQ format: https://en.wikipedia.org/wiki/FASTQ_format

https://github.com/attractivechaos/klib/blob/master/kseq.h
https://perldoc.perl.org/perlxs
https://en.wikipedia.org/wiki/FASTA_format
https://en.wikipedia.org/wiki/FASTQ_format

