Python Library Reference
Release 1.5.2

Guido van Rossum

April 30, 1999

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA
E-mail: guido@CNRI.Reston.Va.US, guido@python.org

Copyright(© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum
or CWI or Corporation for National Research Initiatives or CNRI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

While CWI is the initial source for this software, a modified version is made available by the Corporation for National
Research Initiatives (CNRI) at the Internet addrigssftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, IN-
DIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive WWW browsers.

While thePython Reference Manudkscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file 1/O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 Built-inTYPES . . o o 3
2.2 BUIlt-IN EXCEPLiONS o o e e e e 12
2.3 BUIlt-in FUNCLONS e e 16

3 Python Services 25
3.1 sys — System-specific parameters and functions. oL oL 25
3.2 types — Namesforall built-intypes.. 28
3.3 UserDict — Class wrapper for dictionary objects.. 30
3.4 UserList — Classwrapperforlistobjects.. 30
3.5 operator — Standard operatorsasfunctions..o oL 31
3.6 traceback — Printorretrieve astacktraceback. o oo oL 33
3.7 pickle — Pythonobjectserialization 34
3.8 cPickle — Alternate implementation gfickle 37
3.9 copy _reg — Registempickle supportfunctions. 37
3.10 shelve — Python object persistency. 38
3.11 copy — Shallow and deep copy operations e 39
3.12 marshal — Alternate Python object serialization. 39
3.13 imp — Accessthemport internals. e 40
3.14 parser — Access parse trees for Pythoncade., 43
3.15 symbol — Constants used with Pythonparsetrees 52
3.16 token — Constants used with Pythonparsetrees 52
3.17 keyword — Testing for Pythonkeywords o 53
3.18 tokenize — Tokenizer for Pythonsource. 53
3.19 pyclbr — Python class browsersupport 54
3.20 code — Code objeCt ServiCes.. e e e e e e 54
3.21 pprint — Datapretty printer.. e 54
3.22 repr — Alternaterepr() implementation.. oL L 57
3.23 py_compile — Compile Python sourcefiles.. 58
3.24 compileall =~ — Byte-compile Pythonlibraries.., 58
3.25 dis —Disassembler.. L e e e 59
3.26 site — Site-specific configurationhook L 64
3.27 user — User-specific configurationhooko 65
3.28 __builtin __ —Built-infunctions. 66
3.29 __main __— Top-level scriptenvironment. 66

4 String Services 67

4.1 string —Commonstringoperations e e e e 67
4.2 re — Perl-style regular expression operations. 70
4.3 regex — Regular expression search and match operations. 77
4.4 regsub — String operations using regular expressions 81
4.5 struct — Interpretstrings as packed binarydata.., 82
4.6 Stringl0 — Read andwrite stringsasfiles. 84
4.7 cStringl0 — Fasterversion oBtringlO L 84
Miscellaneous Services 85
5.1 math — Mathematical functions. 85
5.2 cmath — Mathematical functions for complexnumbers 86
5.3 whrandom — Floating point pseudo-random number generator. 88
5.4 random — Generate pseudo-randomnumbers. L 88
5.5 bisect — Array bisection algorithm 89
5.6 array — Efficientarraysofnumericvalues. 920
5.7 ConfigParser — Configurationfileparser. 92
5.8 fileinput — Iteration over lines from multiple input streams. 93
5.9 calendar — Functions that emulate theNux calprogram.. 94
5.10 cmd— Build line-oriented command interpreters.. L L oo 95
5.11 shlex — Simplelexicalanalysis.. e 96
Generic Operating System Services 99
6.1 o0s —Miscellaneous OSinterfaces 99
6.2 os.path — Common pathname manipulations. 107
6.3 stat — Interpretingstat() results. 109
6.4 time —Timeaccessand ConVersionS.. v i i i i e e 111
6.5 getpass — Portable passwordinput. L 114
6.6 getopt — Parserforcommand lineoptions. Lo oo 114
6.7 tempfile — Generatetemporaryfilenames., 115
6.8 errno — Standard errnosystemsymbols.. L L oL o 115
6.9 glob — UNIx style pathname patternexpansion 121
6.10 fnmatch — UNIX style filename pattern matching 122
6.11 shutii — High-levelfile operations L 122
6.12 locale — Internationalizationservices 123
Optional Operating System Services 129
7.1 signal — Sethandlersforasynchronousevents. 129
7.2 socket — Low-level networkinginterface. 131
7.3 select — Waiting forI/O completion. 135
7.4 thread — Multiplethreadsofcontrol. 136
7.5 threading — Higher-level threadinginterface. 137
7.6 Queue —Asynchronizedqueueclass.. 143
7.7 anydbm — Generic access to DBM-styledatabases 144
7.8 dumbdbm— Portable DBM implementation e 145
7.9 dbhash — DBM-style interface to the BSD database libraty. 145
7.10 whichdb — Guess which DBM module created adatabase. 146
7.11 bsddb — Interfaceto Berkeley DB library 146
7.12 zlib — Compression compatiblewithzip Lo 148
7.13 gzip — Supportforgzipfiles e e 150
Unix Specific Services 151
8.1 posix — The most common POSIX systemcalls. 151
8.2 pwd—Thepassworddatabase. e 152
8.3 grp —Thegroupdatabase 152
8.4 crypt — Function used to checklux passwords. 153

10

11

12

8.5 dbm— Simple “database” interface. 153
8.6 gdbm— GNU'sreinterpretationofdbm. 153
8.7 termios —POSIXstylettycontrol. 155
8.8 TERMIOS— Constants used with thermios module 156
8.9 fcntl — Thefentl() andioctl() systemcalls. 156
8.10 posixfile — File-like objects with lockingsupport 157
8.11 resource — Resource usage information. 0 159
8.12 syslog — UNix sysloglibraryroutines 161
8.13 popen2 — Subprocesses with accessible standard I/O streams 162
8.14 commands— Utilities forrunningcommands 0. 163
The Python Debugger 165
9.1 Debugger Commands e e 166
9.2 How ItWOrks. o e 168
The Python Profiler 171
10.1 Introductiontothe profiler 171
10.2 How Is This Profiler Different From The Old Profiler?. 171
10.3 InstantUsers Manual. 0 e 172
10.4 What Is Deterministic Profiling?. e 174
10.5 Reference Manual e 174
10.6 Limitations. e e 177
10.7 Calibration. e 177
10.8 Extensions — Deriving Better Profilers. e 178
Internet Protocols and Support 183
11.1 cgi — Common Gateway Interface support.. e 183
11.2 urlib — Open an arbitrary objectgivenby URL. 189
11.3 httplib — HTTP protocolclient. e 191
11.4 ftplib —FTP protocolclient. e 192
11.5 gopherlib — Gopher protocolclient 195
11.6 poplib —POP3protocolclient. 196
11.7 imaplib — IMAP4 protocolclient e 197
11.8 nntplib — NNTP protocolclient. e 200
11.9 smtplib — SMTP protocolclient. 202
11.10telnetlib —Telnetclient e 205
11.12urlparse — Parse URLsintocomponents.. o e 207
11.12SocketServer — A framework for network servers.. L L. 208
11.13BaseHTTPServer —BasicHTTP server.. it e et 210
Internet Data Handling 213
12.1 sgmllib — Simple SGML parser. e e e 213
12.2 htmllib — AparserforHTMLdocuments i it 215
12.3 xmllib — Aparserfor XMLdocuments. 216
12.4 formatter = — Generic output formatting o 219
12.5 rfc822 —Parse RFC822mailheaders. 223
12.6 mimetools — Tools for parsing MIMEmessages v v i v i i i v 225
12.7 MimeWriter — Generic MIME filewriter 226
12.8 muiltifile — Support for files containing distinctparts. o oL 227
12.9 binhex — Encode and decode binhex4files0 L. 229
12.10uu — Encode and decode uuencodefiles L oL L o 230
12.11binascii — Convert between binaryamdscil 230
12.12xdrlib — Encode and decode XDRdata.. 231
12.13mailcap — Mailcapfile handling.. 234
12.14mimetypes — Map filenamesto MIME types. e 235

13

14

15

16

17

18

19

12.15base64 — Encode and decode MIME base64data.« 236

12.16quopri — Encode and decode MIME quoted-printabledata 236
12.17mailbox — Read various mailbox formats o Lo oL 236
12.18mhlib — Accessto MH mailboxes L 237
12.19mimify — MIME processingof mailmessages. o o 239
12.20netrc —nnetrcfile processing. L e e 240
Restricted Execution 241
13.1 rexec — Restricted executionframework L oL 242
13.2 Bastion — Restrictingaccesstoobjects e 244
Multimedia Services 245
14.1 audioop — Manipulateraw audiodata e 245
14.2 imageop — Manipulaterawimagedata. e 248
14.3 aifc — Read and write AIFFand AIFCfiles. o 249
14.4 colorsys — Conversions between colorsystems 251
14.5 rgbimg — Read and write “SGIRGB"files L o 251
14.6 imghdr — Determinethetypeofanimage.., 252
14.7 sndhdr — Determinetype of soundfile.. 253
Cryptographic Services 255
15.1 md5— MD5 message digestalgorithm. 255
15.2 sha — SHA message digestalgorithm. 256
15.3 mpz— GNU arbitrary magnitude integers e 256
15.4 rotor — Enigma-like encryption and decryption.. L oo 257
SGI IRIX Specific Services 259
16.1 al — Audio functionsonthe SGl e 259
16.2 AL — Constants used withthed module 261
16.3 cd — CD-ROM access on SGISystems ittt e 261
16.4 fl — FORMS library interface for GUl applications. 264
16.5 FL — Constants used withtife module 269
16.6 flp — Functions for loading stored FORMS designs. 270
16.7 fm — Font Manageiinterface. e 270
16.8 gl — Graphics Libraryinterface L 271
16.9 DEVICE— Constants used withtlgd module 273
16.10GL— Constants used withttgd module 273
16.11imgfile — Support for SGlimglibfiles o 273
16.12jpeg — Read and write JPEGfiles. 274
SunOS Specific Services 277
17.1 sunaudiodev — Accessto Sunaudiohardware. oo 277
MS Windows Specific Services 279
18.1 msvert — Useful routines fromthe MSVC++runtime 279
18.2 winsound — Sound-playing interface for Windows. L. 280
Undocumented Modules 281
19.1 FrameworkS. o o o e 281
19.2 Miscellaneous useful utilities. L 281
19.3 Platform specificmodules 282
19.4 Multimedia. e e 282
195 OddIties e 282
19.6 Obsolete. e 283
19.7 Extensionmodules 283

Module Index 285

Index 287

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, like socket 1/O; others provide interfaces that are
specific to a particular application domain, like the World-Wide Web. Some modules are avaiable in all versions
and ports of Python; others are only available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out”: it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy referénce.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See Chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the..* notation). The latter conversion is implicitly used when an object is written
by theprint statement.

Truth Value Testing

Any object can be tested for truth value, for use iriffanor while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e zero of any numeric type, e.d, OL, 0.0 .

e any empty sequence, e.y.,, () ,[] -

e any empty mapping, e.d} .

e instances of user-defined classes, if the class definesianzero __() or __len __() method, when that

method returns zero.

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always retionfalse andl for true, unless otherwise
stated. (Important exception: the Boolean operations and ‘and’ always return one of their operands.)

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex Q)
x and y | if xis false, therx, elsey 1)
not x if xis false, therl, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ' has a lower priority than non-Boolean operators, so a@. a == is interpreted asot(a == b) ,
anda == not b isasyntax error.

Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarilyxeg.y <= z is equivalenttax < y and y

<= z, except thay is evaluated only once (but in both casess not evaluated at all whex < vy is found to be

false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
<> not equal (1)
I= not equal (1)
is object identity

is not negated object identity

Notes:
(1) <> and!= are alternate spellings for the same operator. (I couldn’'t choose beteeeand C! :-)

Obijects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (e.g., win-
dows) support only a degenerate notion of comparison where any two objects of that type are unequal. Again, such
objects are ordered arbitrarily but consistently.

(Implementation note: objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.)

Two more operations with the same syntactic priority, “and ‘not in ’, are supported only by sequence types
(below).

4 Chapter 2. Built-in Types, Exceptions and Functions

Numeric Types

There are four numeric typeglain integers long integers floating point numbersand complex numbersPlain
integers (also just calleititegers are implemented usinigng in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implementeddaibte in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implementediosislg in C. To extract these
parts from a complex numbeyusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with'aor “ | * suffix yield long integers '

is preferred becausdl ' looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appendirjg ‘or ‘J’ to a numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the fame rule.
The functionsnt() ,long() ,float() ,andcomplex() can be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
x/y guotient ofx andy Q)
X %y remainder ok / vy
- X X negated
+X x unchanged
abs(x) absolute value or magnitude »f
int(x) X converted to integer (2)
long(X) x converted to long integer (2)
float(X) x converted to floating point
complex(re, im) | acomplex number with real pas, imaginary parim. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(X, V) thepair(x / 'y, x %) 3)
pow(X, YY) x to the powery
X ¥y x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is O.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furftian(s
andceil) in modulemath for well-defined conversions.

(3) See the section on built-in functions for an exact definition.

Bit-string Operations on Integer Types

2As a consequence, the Ijdt, 2] is considered equal {d.0, 2.0] , and similar for tuples.

2.1. Built-in Types 5

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operatiofi * has the same priority as the other unary numeric operatiens(id ‘- °).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation | Result Notes
X|y bitwiseor of x andy
X"y bitwise exclusive oof x andy
X &y bitwiseandof x andy
X << n | xshifted left byn bits (1), (2)
X >> n | xshifted right byn bits (1), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError to be raised.

(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division bgow(2, n) without overflow check.

Sequence Types

There are three sequence types: strings, lists and tuples.

Strings literals are written in single or double quoteyzzy’ ,"frobozz" . See Chapter 2 of tHeython Reference
Manual for more about string literals. Lists are constructed with square brackets, separating items with commas:
[a, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without enclosing
parentheses, but an empty tuple must have the enclosing parentheseas, p,gg or() . A single item tuple must

have a trailing comma, e.dd,)

Sequence types support the following operations. Tie &nd ‘not in ' operations have the same priorities as the
comparison operations. The 'and **’ operations have the same priority as the corresponding numeric operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation Result Notes
X in s 1 if an item ofsis equal tax, else0
X not in s | Oifanitem ofsis equal tax, elsel
s+t the concatenation afandt
S * n, n* s | ncopies ofsconcatenated 3)
9] i'th item of s, origin O 1)
g i] slice ofsfromi toj @), @
len(9) length ofs
min(s) smallest item of
max(s) largest item of

Notes:

3They must have since the parser can't tell the type of the operands.

Chapter 2.

Built-in Types, Exceptions and Functions

(1) If i orj is negative, the index is relative to the end of the string,le@(s) + iorlen(s) + |is substituted.
But note thatO is still 0.

(2) The slice ofsfromi to] is defined as the sequence of items with indexich that <= k < j. If i orj is greater
thanlen(s), uselen(s). If i is omitted, usd. If j is omitted, usden(s) . If i is greater than or equal {p
the slice is empty.

(3) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typsg).as

More String Operations

String objects have one unique built-in operation: %heperator (modulo) with a string left argument interprets this
string as a Gprintf() format string to be applied to the right argument, and returns the string resulting from this
formatting operation.

The right argument should be a tuple with one item for each argument required by the format string; if the string
requires a single argument, the right argument may also be a single non-tuple*cijedollowing format characters

are understood% c, s, i, d, u, 0, X, X, e, E, f, g, G Width and precision may be*ato specify that an integer
argument specifies the actual width or precision. The flag charactersblank,# and0 are understood. The size
specifiersh, | or L may be present but are ignored. T¥s conversion takes any Python object and converts it to a
string usingstr() before formatting it. The ANSI featurédépand%nare not supported. Since Python strings have

an explicit length%sconversions don't assume tHel' is the end of the string.

For safety reasons, floating point precisions are clipped t&/&G;onversions for numbers whose absolute value is
over 1e25 are replaced Bggconversions. All other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have a parenthesized
key into that dictionary inserted immediately after tR&character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2

>>> |anguage = 'Python’

>>> print '%(language)s has %(count)03d quote types.” % vars()
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

Additional string operations are defined in standard modtrlag and in built-in modulee .

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable
sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (whexas an arbitrary object):

4A tuple object in this case should be a singleton.
5These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

2.1. Built-in Types 7

Operation Result Notes
gi] = x itemi of sis replaced by
gi:j] = t slice ofsfromi to is replaced by
del di:j] sameas i: j] =[]
s.append(x) same ag{len(s)len(9] = [X
s.extend(Xx) same agllen(s)len(9] = x (5)
scount(X) return number of's for whichg[i] == x
sindex(X) return smallest such that[i] == x 1)
sinsert(i, X) sameasi:i] = [x] ifi >= 0
s.pop([i]) sameax = di]; del g i]; return X (4)
s.remove(X) same aslel ¢ sindex(X)] D)
s.reverse() reverses the items afin place 3)
s.sort([cmpfund) sort the items o§in place (2), (3)

Notes:

(1) Raises an exception wheris not found ins.

(2) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should returnl , 0 or 1 depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument. Note that this slows the sorting process down considerably; e.g. to sort a list
in reverse order it is much faster to use calls to the metsod$) andreverse() than to use the built-in
functionsort() with a comparison function that reverses the ordering of the elements.

(3) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. They don't return the sorted or reversed list to remind you of this side effect.

(4) Thepop() method is experimental and not supported by other mutable sequence types than lists. The optional
argument defaults to-1 , so that by default the last item is removed and returned.

(5) Raises an exception whenis not a list object. Thextend() method is experimental and not supported by
mutable types other than lists.

Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thetionary. A dictionary’s keys are almost arbitrary values. The

only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (&.gnd1.0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a comma-separated lidtepf value pairs within braces, for example:
{jack’: 4098, ’'sjoerd: 4127} or{4098: ‘jack’, 4127: ’sjoerd’}

The following operations are defined on mappings (wladgea mappingk is a key andk is an arbitrary object):

8 Chapter 2. Built-in Types, Exceptions and Functions

Operation Result Notes
len(a) the number of items ia
al K] the item ofa with key k (1)
akl = x seta[k] tox
del a[kK removea] k] froma (1)
a.clear() remove all items frona
a.copy() a (shallow) copy ot
a.has _key(k) | 1if ahas a ke, else0
a.items() a copy ofa’s list of (key, valug pairs (2)
a.keys() a copy ofa’s list of keys (2)
a.update(b) for k, v in b.items(): ak] = v 3)
a.values() a copy ofa’s list of values (2)
aget(k[, f]) | the value ofa with keyk ()

Notes:

(1) Raises an exceptionlkfis not in the map.
(2) Keys and values are listed in random order.
(3) b must be of the same type as

(4) Never raises an exceptionkfis not in the map, instead it returfsf is optional, when not provided ards not
in the mapNone is returned.

Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaessiame wheremis a module ancthameaccesses a hame
defined inm's symbol table. Module attributes can be assigned to. (Note thatpert statement is not, strictly
speaking, an operation on a module objé@uiport foo does not require a module object nanfedto exist, rather
it requires an (externatlefinitionfor a module nametbo somewhere.)

A special member of every module is dict __. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to thiet __
attribute is not possible (i.e., you can write __dict __[@] = 1 , which definean.a to bel, but you can’t
writem. __dict __ = {} .

Modules built into the interpreter are written like thismodule 'sys’ (built-in)> . If loaded from a file,
they are written asmodule ’'os’ from ’/usr/local/lib/pythonl.5/0s.pyc’>

Classes and Class Instances

See Chapters 3 and 7 of tRgthon Reference Manufdr these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
fung argument-lis} .

2.1. Built-in Types 9

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attributésnc _code is a function’scode objec{see below) and
f.func _globals is the dictionary used as the function’s global name space (this is the same_aslict
wheremis the module in which the functidhwas defined).

Methods
Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methimals:self is the object on
which the method operates, andm _func is the function implementing the method. Callim§arg-1, arg-2,
.., arg-n) is completely equivalent to calling.im _func(m.im _self, arg-1, arg-2, ..., arg-n.

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the buitempile() function and can be extracted from function objects
through theirfunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgtedhstatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypetfpn . There
are no special operations on types. The standard mdyhes defines names for all standard built-in types.

Types are written like thisctype ’'int’>

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namédione (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (sedPytbon Reference Manyallt supports no special operations.
There is exactly one ellipsis object, nant&itipsis (a built-in name).

It is written asEllipsis

10 Chapter 2. Built-in Types, Exceptions and Functions

File Objects

File objects are implemented using G&lio package and can be created with the built-in functpen() de-
scribed section 2.3, “Built-in Functions.” They are also returned by some other built-in functions and methods, e.g.,
posix.popen() andposix.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/0O-related reason, the excep@&mror is raised. This includes situations where
the operation is not defined for some reason, $igek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()

Close the file. A closed file cannot be read or written anymore.
flush ()

Flush the internal buffer, liketdio s fflush()
isatty ()

Returnl if the file is connected to a tty(-like) device, elBe

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, e.g. module
fcntl oros.read() and friends.

read ([size])
Read at mossizebytes from the file (less if the read hi®F before obtainingizebytes). If thesizeargument
is negative or omitted, read all data urgibr is reached. The bytes are returned as a string object. An empty
string is returned wheBoF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after aOFis hit.) Note that this method may call the underlying C funci@ad() more than once
in an effort to acquire as close sizebytes as possible.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the $tmg may be absent when a
file ends with an incomplete line). If tr@zeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returned¢aien
is hitimmediately. Note: unlikstdio ’'sfgets() ,the returned string contains null characté® () if they
occurred in the input.

readlines ([sizehint])
Read untilEoF using readline() and return a list containing the lines thus read. If the opti@mehint
argument is present, instead of reading ugaa, whole lines totalling approximatelsizehintbytes (possibly
after rounding up to an internal buffer size) are read.

seek (offse{, Whencd)
Set the file’s current position, likstdio s fseek() . Thewhenceargument is optional and defaults @
(absolute file positioning); other values dréseek relative to the current position) addseek relative to the
file’s end). There is no return value.

tell ()
Return the file’s current position, likedio s ftell()

truncate ([size])
Truncate the file's size. If the optional size argument present, the file is truncated to (at most) that size. The size
defaults to the current position. Availability of this function depends on the operating system version (e.g., not
all UNIX versions support this operation).

write (str)

6The advantage of leaving the newline on is that an empty string can be returned t@ areaithout being ambiguous. Another advantage is
that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.1. Built-in Types 11

Write a string to the file. There is no return value. Note: due to buffering, the string may not actually show up
in the file until theflush() orclose() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to meatdhnes() ;
writelines() does not add line separators.)

File objects also offer the following attributes:

closed
Boolean indicating the current state of the file object. This is a read-only attributesldbe() method
changes the value.

mode
The 1/0 mode for the file. If the file was created using tipen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute.

name
If the file object was created usirapen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the forrs!..> . This is a read-only attribute.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vetifdfpace attribute,
which should be initialized to zero. This will be automatic for classes implemented in Python; types imple-
mented in C will have to provide a writabseftspace attribute.

Internal Objects

See thePython Reference Manu#br this information. It describes code objects, stack frame objects, traceback
objects, and slice objects.

Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

__dict
A dictionary of some sort used to store an object’s (writable) attributes.

__methods __
List of the methods of many built-in object types, e[f§., __methods __ yields['append’, 'count’,
'index’, 'insert’, 'pop’, 'remove’, 'reverse’, 'sort’]

__members__
Similar to__methods __, but lists data attributes.

__class __
The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. While traditionally, most exceptions have been string objects, in
Python 1.5, all standard exceptions have been converted to class objects, and users are encouraged to do the same. The

12 Chapter 2. Built-in Types, Exceptions and Functions

source code for those exceptions is present in the standard library neoagletions ; this module never needs to
be imported explicitly.

For backward compatibility, when Python is invoked with tXeoption, most of the standard exceptions are stfings
This option may be used to run code that breaks because of the different semantics of class based excepons. The
option will become obsolete in future Python versions, so the recommended solution is to fix the code.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with aexcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit wehibdrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument ofékeept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard rootElaeption , the associated value is present as

the exception instance&rgs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions. When string-based standard exceptions
are used, they are tuples containing the directly derived classes.

Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedsiffje function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’sargs attribute, as a tuple.

StandardError
The base class for all built-in exceptions excB8gstemExit . StandardError itself is derived from the
root class€Exception

ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @verflowError
ZeroDivisionError , FloatingPointError

LookupError

The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError

EnvironmentError
The base class for exceptions that can occur outside the Python sy®termor , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instarcets attribute (it is assumed
to be an error number), and the second item is available osttbror attribute (it is usually the associated
error message). The tuple itself is also available oratigs attribute. New in version 1.5.2.

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as

"For forward-compatibility the new exceptiofxception , LookupError , ArithmeticError , EnvironmentError , andStan-
dardError are tuples.

2.2. Built-in Exceptions 13

above, while the third item is available on tlilename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentsefihe and
strerror attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised. They are class objects, exceptheptibe
is used to revert back to string-based standard exceptions.

AssertionError
Raised when aassert statement fails.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at allypeError s raised.)

EOFError
Raised when one of the built-in functionsgut() or raw _input()) hits an end-of-file conditiongoF)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hitEOF.)

FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined
in the ‘config.h’ file.

IOError
Raised when an I/O operation (such gwimt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived frorenvironmentError . See the discussion above for more information on exception
instance attributes.

ImportError
Raised when aimport statement fails to find the module definition or whefniam ... import fails to

find a name that is to be imported.

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

Keyboardinterrupt
Raised when the user hits the interrupt key (norm@lntrol-C or DEL). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipnt() orraw _input()) is waiting
for input also raise this exception.

MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@doc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is the name that could not be found.

NotlmplementedError

14 Chapter 2. Built-in Types, Exceptions and Functions

This exception is derived frorRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

OSEtrror
This class is derived frof&environmentError and is used primarily as thies module’'sos.error excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
1.5.2.

OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

SyntaxError
Raised when the parser encounters a syntax error. This may occurimpan statement, in arexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).

When class exceptions are used, instances of this class have atttfileutase , lineno , offset and

text for easier access to the details; for string exceptions, the associated value is usually a tuple of the form
(message, (filename, lineno, offset, text)) . For class exceptionsir() returns only the
message.

SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version string

of the Python interpretersys.version ; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

SystemEXxit

This exception is raised by thsys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

When class exceptions are used, the instance has an attrdagewhich is set to the proposed exit status or
error message (defaulting done). Also, this exception derives directly froException and notStan-
dardError , since it is not technically an error.

A call to sys.exit() is translated into an exception so that clean-up handferally clauses ofry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately
(e.g., after dork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

ValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sincteg&rror

2.2. Built-in Exceptions 15

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thgnport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghg statement. For examples
of why and how you would do this, see the standard library modhtasks andrexec . See also the built-in
moduleimp, which defines some useful operations out of which you can build your_ owmport __()

function.

For example, the statementmport spam ' results in the following call: __import __('spam’,
globals(), locals(), [) ; the statementfrom spam.ham import eggs results in
__import __('spam.ham’, globals(), locals(), ['eggs’) . Note that even thouglo-

cals() and[eggs’] are passed in as arguments, theémport __() function does not set the local
variable namecakggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not uséoitals argument at all, and uses bobalsonly to determine the
package context of thenport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till the
first dot) is returnedpotthe module named hyame However, when a non-emptsomlistargument is given, the
module named bpameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when usingnport spam.ham.eggs ', the top-level packagepam must be
placed in the importing namespace, but when usfngm spam.ham import eggs ', the spam.ham
subpackage must be used to find dggs variable. As a workaround for this behavior, ugtattr() to
extract the desired components. For example, you could define the following helper:

import string

def my_import(name):
mod = __import__(name)
components = string.split(name, '.")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, argi, keywords])
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargs argument must be a sequence (if it is not a tuple, the sequence is first converted to a tuple). The
functionis called withargsas the argument list; the number of arguments is the the length of the tuple. (This is
different from just callingund args) , since in that case there is always exactly one argument.) If the optional
keywordsargument is present, it must be a dictionary whose keys are strings. It specifies keyword arguments to
be added to the end of the the argument list.

buffer (objec{, offse[, size]])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdhgctargument. The buffer object will be a slice from

16 Chapter 2. Built-in Types, Exceptions and Functions

the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by theizeargument).

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havecall __() method.

chr (i)
Return a string of one character whascil code is the integer e.g.,chr(97) returns the stringg’ . This
is the inverse obrd() . The argument must be in the range [0..255], inclusive.

cmp(X, y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X <y, zeroifx == yand strictly positive ifx > .

coerce (X,Y)

Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, king
Compile thestringinto a code object. Code objects can be executed lBxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; passstgng>’
if it wasn't read from a file. Th&ind argument specifies what kind of code must be compiled,; it caaxss’
if string consists of a sequence of statemetgsal’ if it consists of a single expression, @ingle’ if
it consists of a single interactive statement (in the latter case, expression statements that evaluate to something
else tharNone will printed).

complex (real[, imag])
Create a complex number with the vaheal + imagj or convert a string or number to a complex number. Each
argument may be any numeric type (including compleximiigis omitted, it defaults to zero and the function
serves as a numeric conversion function lik) , long() andfloat() ; in this case it also accepts a
string argument which should be a valid complex number.

delattr (object, namg
This is a relative ofetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(%, ' foobar) is equivalenttalel x. foobar.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attribute for that object. This information is gleaned from the objectfict __,
__methods __and__members__ attributes, if defined. The listis not necessarily complete; e.g., for classes,
attributes defined in base classes are not included, and for class instances, methods are not included. The
resulting list is sorted alphabetically. For example:

>>> jmport sys

>>> dir()

['sys’]

>>> dir(sys)

[argv’, 'exit’, 'modules’, 'path’, ’'stderr’, 'stdin’, 'stdout’]
>>>

divmod (a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and

long integers, the result is the samg@s/ b, a % b). For floating point numbers the result is the same as
(math.floor(al b, a%b).

2.3. Built-in Functions 17

eval (expressio[n, globals[, Iocals]])
The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) usingltiigalsandlocalsdictionaries as global and
local name space. If tHecalsdictionary is omitted it defaults to thgdobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment wéngie is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval(’x+1’)
2

This function can also be used to execute arbitrary code objects (e.g. createchpie()). In this case
pass a code object instead of a string. The code object must have been compiled’paabing to thekind
argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esalfy or
execfile()

execfile (file[, globals[, Iocals]])
This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modufe.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ¢iebals andlocals dictionaries as global and local name

space. If thdocalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are omitted,

the expression is executed in the environment weeezfile() is called. The return value done.

filter (function, lis)
Construct a list from those elementslist for which functionreturns true. Hist is a string or a tuple, the result
also has that type; otherwise it is always a listfufictionis None, the identity function is assumed, i.e. all
elements ofist that are false (zero or empty) are removed.

float (X)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed dec-
imal or floating point number, possibly embedded in whitespace; this behaves idensitraigoatof(X) .

Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

getattr (object, namg
The arguments are an object and a string. The string must be the name of one of the object’s attributes. The
result is the value of that attribute. For exammjetattr(%, ' foobar) is equivalent tox. foobar.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namg
The arguments are an object and a string. The resultis 1 if the string is the name of one of the object’s attributes,
0 if not. (This is implemented by callingetattr(object namg and seeing whether it raises an exception
or not.)

8|t is used relatively rarely so does not warrant being made into a statement.

18 Chapter 2. Built-in Types, Exceptions and Functions

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, e.g. 1 and 1.0).

hex (X)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit machie&(-1) yields 'Oxffffffff’ . When

evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

id (objec)
Return the ‘identity’ of an object. This is an integer which is guaranteed to be unique and constant for this object
during its lifetime. (Two objects whose lifetimes are disjunct may have the gijne value.) (Implementation
note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw _input(prompd) .

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whiddtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(i.e. never get garbage collected).

int (X
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical
to string.atoi(X) . Otherwise, the argument may be a plain or long integer or a floating point number.
Conversion of floating point numbers to integers is defined by the C semantics; normally the conversion truncates
towards zerd.

isinstance (object, clasy
Return true if theobjectargument is an instance of tlibassargument, or of a (direct or indirect) subclass
thereof. Also return true i€lassis a type object andbjectis an object of that type. Ibbjectis not a class
instance or a object of the given type, the function always returns falstad$is neither a class object nor a
type object, al'ypeError exception is raised.

issubclass (classl, classp
Return true ifclasslis a subclass (direct or indirect) ofass2 A class is considered a subclass of itself. If either
argument is not a class objectTgpeError exception is raised.

len ()
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list (sequence
Return a list whose items are the same and in the same ordegasncs items. If sequencés already a list,

a copy is made and returned, similardgequende] . For instancelist(’abc’) returns returng'a’,
b, ¢ andlist((1, 2, 3)) returns[l, 2, 3]

locals ()
Return a dictionary representing the current local symbol tAligning: the contents of this dictionary should
not be modified; changes may not affect the values of local variables used by the interpreter.

long (X)

9This is ugly — the language definition should require truncation towards zero.

2.3. Built-in Functions 19

Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed deci-
mal number of arbitrary size, possibly embedded in whitespace; this behaves idersicagatol(X) .
Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with the
same value is returned. Conversion of floating point numbers to integers is defined by the C semantics; see the
description ofint()

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additionigdt arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended wWittne items. Iffunctionis None, the identity function is assumed; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (i.e. a kind of transpose operation). Tis¢ arguments may be any kind of sequence; the result is
always a list.

max(s[, args...])
With a single argumenrd, return the largest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumersd, return the smallest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the smallest of the arguments.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit mactio;1) vyields'037777777777 . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raiseCarerflowError exception.

open (filenam({, mode[, bufsizd])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for
stdio 's fopen() : filenameis the file name to be openethodeindicates how the file is to be opened:
for reading,w’ for writing (truncating an existing file), arid’ opens it for appending (which @omeUNIx
systems means thall writes append to the end of the file, regardless of the current seek position).

Modes’r+' ,’'w+ and’at’ open the file for updating (note that+ truncates the file). Appent’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opend@Error s raised.

If modeis omitted, it defaults t&' . When opening a binary file, you should appélnd to themodevalue

for improved portability. (It's useful even on systems which don't treat binary and text files differently, where

it serves as documentation.) The optiobafsizeargument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which is usually line buffered for for tty devices and fully
buffered for other files. If omitted, the system default is uSed.

ord (c¢)
Return theascii value of a string of one character. E.grd(’a’) returns the integed7. This is the inverse
of chr()

pow(X, y[z])
Returnx to the powery; if z is present, returix to the powery, moduloz (computed more efficiently than
pow(X, Yy) % 2z). The arguments must have numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the type of the result; if the result is not expressible
in this type, the function raises an exception; epgw(2, -1) orpow(2, 35000) is not allowed.

range ([start,] sto;{, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often tmmedlaops.

10specifying a buffer size currently has no effect on systems that don'tdetvbuf() . The interface to specify the buffer size is not done
using a method that calietvbuf() , because that may dump core when called after any I/O has been performed, and there’s no reliable way to
determine whether this is the case.

20 Chapter 2. Built-in Types, Exceptions and Functions

The arguments must be plain integers. If tepargument is omitted, it defaults th. If the start argument
is omitted, it defaults t®. The full form returns a list of plain integefsstart, start + step start + 2

* step ..] . If stepis positive, the last element is the largetdrt + i * stepless tharstop if stepis
negative, the last element is the largstrt + i * stepgreater tharstop stepmust not be zero (or else
ValueError s raised). Example:

>>> range(10)

[0, 1, 2, 3, 4,5,6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4,5, 6, 7, 8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

i

>>> range(1, 0)

1

>>>

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. &@irés read,
EOFError is raised. Example:

>>> s = raw_input(’-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus”
>>>

If the readline module was loaded, theraw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequen({einitializer])
Apply function of two arguments cumulatively to the items sfquencefrom left to right, so as to reduce
the sequence to a single value. For exampdeluce(lambda x, y: x+y, [1, 2, 3, 4, 5]
calculateq(((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is empty.

reload (modulg
Re-parse and re-initialize an already impornteddule The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (i.e. the same as theoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firsiport statement for it does not bind
its name locally, but does store a (partially initialized) module objesygimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used

2.3. Built-in Functions 21

to the module’s advantage if it maintains a global table or cache of objects — wigh atatement it can test
for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, excagsfor
__main __and__builtin ~ __. In certain cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module usirgm ... import ..., callingreload() for the
other module does not redefine the objects imported from it — one way around this is to re-exefumthe
statement, another is to useport and qualified namesr(odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed t@val()

round (x[, n])
Return the floating point valuerounded tan digits after the decimal point. Hiis omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powenjifinus
two multiples are equally close, rounding is done away from 0 (sorewnd(0.5) is 1.0 andround(-
0.5) is-1.0).

setattr (object, name, valye
This is the counterpart gfetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr(x, ' foobar, 123) is equivalent tox. foobar = 123.

slice ([start,] stor{, step])
Return a slice object representing the set of indices specifiedrige(start, stop step . Thestartand
steparguments default to None. Slice objects have read-only data attritates , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used, e.g. fa[start:stop:step] "or ‘a[start:stop, i] '

str (objec)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr(objec) is thatstr(objec) does not always attempt to return a string that is
acceptable teval() ;its goal is to return a printable string.

tuple (sequence
Return a tuple whose items are the same and in the same ordegasncs items. If sequencas already
a tuple, it is returned unchanged. For instartagle(’abc’) returns returng’a’, 'b’, 'c’) and
tuple([1, 2, 3]) returns(1, 2, 3)

type (objec)
Return the type of anbject The return value is a type object. The standard motjygdes defines names for
all built-in types. For instance:

>>> import types
>>> jf type(x) == types.StringType: print "It's a string"

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hasliat __ attribute), returns a dictionary

22 Chapter 2. Built-in Types, Exceptions and Functions

corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefiriéd.

xrange ([start,] sto;{, step])
This function is very similar tdange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all si-
multaneously. The advantage xiainge() overrange() is minimal (sincexrange() still has to create
the values when asked for them) except when a very large range is used on a memory-starved machine (e.g.

MS-DOS) or when all of the range’s elements are never used (e.g. when the loop is usually terminated with
break).

1n the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (e.g.
modules) can be. This may change.

2.3. Built-in Functions 23

24

CHAPTER
THREE

Python Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys
types
UserDict
UserList
operator
traceback
pickle
cPickle

copy _reg
shelve

copy
marshal
imp

parser
symbol
token
keyword
tokenize
pyclbr

code

pprint

repr

py _compile
compileall
dis

site

user
__builtin - __
__main __

Access system-specific parameters and functions.

Names for all built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

All Python’s standard operators as built-in functions.

Print or retrieve a stack traceback.

Convert Python objects to streams of bytes and back.
Faster version gbickle , but not subclassable.
Registempickle support functions.

Python object persistency.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Access the implementation of tiport statement.

Access parse trees for Python source code.

Constants representing internal nodes of the parse tree.
Constants representing terminal nodes of the parse tree.
Test whether a string is a keyword in Python.

Lexical scanner for Python source code.

Supports information extraction for a Python class browser.
Code object services.

Data pretty printer.

Alternaterepr() implementation with size limits.

Compile Python source files to byte-code files.

Tools for byte-compiling all Python source files in a directory tree.
Disassembler.

A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The set of built-in functions.

The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv

The list of command line arguments passed to a Python saigiv[0] is the script name (it is operating

25

system dependent whether this is a full pathname or not). If the command was executed usintdtimmand
line option to the interpreteargv[0] is set to the stringc’ . If no script name was passed to the Python
interpreterargv has zero length.

builtin _module _names

A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way +wodules.keys() only lists the imported modules.)

copyright

A string containing the copyright pertaining to the Python interpreter.

exc _info ()

This function returns a tuple of three values that give information about the exception that is currently being

handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its

caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is

defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned drgpe valug tracebach . Their meaning istypegets the exception type

of the exception being handled (a string or class objaa)ue gets the exception parameter (&ssociated
valueor the second argumenttaise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: assigning thdracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function or
by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the best
solution is to use something likgpe, value = sys.exc _info()[:2] to extract only the exception

type and value. If you do need the traceback, make sure to delete it after use (best doneywith &inally

statement) or to caltxc _info() in a function that does not itself handle an exception.

exc _type
exc _value
exc _traceback

Deprecated since release 1.%Iseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handigd, type is set toNone and the other two are
undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local’ . This can be set at build time with theexec-prefix argument to
the configure script. Specifically, all configuration files (e.g. thephfig.n’ header file) are installed in the
directoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are installed in
exec _prefix + '/lib/python versiorilib-dynload’ , Whereversionis equal toversion[:3]

executable

A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ([arg])

Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified by
finally clauses ofry statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argumerarg can be an integer giving the exit status (defaulting to zero), or another type of object.

If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal
termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1 for

26

Chapter 3. Python Services

all other kind of errors. If another type of object is pasdedne is equivalent to passing zero, and any other
object is printed teys.stderr and results in an exit code of 1. In particulays.exit("some error
message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Note: the exit function is not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() is called.

getrefcount (objec)
Return the reference count of tleject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgettrégcount()

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use isrport pdb; pdb.pm() ' to enter the post-mortem debugger; see the chapter
“The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return valuegfoninfo() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke fdype etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
modules

This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload() on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable $PYTHON-
PATH, or an installation-dependent default.

The first item of this listpath[0] , is the directory containing the script that was used to invoke the Python

interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script is
read from standard inpupath[0] is the empty string, which directs Python to search modules in the current
directory first. Notice that the script directory is insertegforethe entries inserted as a result of $PYTHON-

PATH.

platform
This string contains a platform identifier, elgunos5’ or’linuxl’ . This can be used to append platform-
specific components feath , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed; by
default, this is the stringJusr/local’ . This can be set at build time with theprefix argument to
the configure script. The main collection of Python library modules is installed in the diregboefix
+ ’llib/python version while the platform independent header files (all excephfig.h’) are stored in
prefix + ’'/linclude/python versiori , whereversionis equal toversion[:3]

psi

ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case a&> ' and’... ' . If a non-string object is

3.1. sys — System-specific parameters and functions 27

assigned to either variable, g&() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The defaQltiseaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a value= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See the chapter on the Python Profiler. The system'’s profile function is called similarly to the system’s trace
function (seesettrace()), butitisn’t called for each executed line of code (only on call and return and when
an exception occurs). Also, its return value is not used, so it can just fgaure.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. See
section “How It Works” in the chapter on the Python Debugger.

stdin
stdout
stderr
File objects corresponding to the interpreter’s standard input, output and error strettims. is used for
all interpreter input except for scripts but including callsriput() andraw _input() . stdout is used
for the output ofprint and expression statements and for the promptemit() andraw _input()
The interpreter's own prompts and (almost all of) its error messages sléor . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it hadtey) method that takes a
string argument. (Changing these objects doesn’t affect the standard 1/O streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

__stdin __

__stdout __

__stderr
These objects contain the original valuesstafin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case
they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defdl008. When set to O or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter.

3.2 types — Names for all built-in types.

This module defines names for all object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. It is safe to freert types import * " — the module does not export
any names besides the ones listed here. New names exported by future versions of this module will allygef in *

Typical use is for functions that do different things depending on their argument types, like the following:

28 Chapter 3. Python Services

from types import *
def delete(list, item):
if type(item) is IntType:
del list[item]
else:
list.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).

IntType

The type of integers (e.d.).
LongType

The type of long integers (e.gL).

FloatType
The type of floating point numbers (e 4.0).

ComplexType

The type of complex numbers (e .0j).
StringType

The type of character strings (e!§pam’).

TupleType
The type of tuples (e.d1, 2, 3, 'Spam’)).

ListType
The type of lists (e.g[0, 1, 2, 3]).

DictType

The type of dictionaries (e.g'Bacon’: 1, 'Ham’. 0}
DictionaryType

An alternate name fdDictType

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name fdfunctionType

CodeType
The type for code objects such as returnec¢bmpile()

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name fdvlethodType .

3.2. types — Names for all built-in types.

29

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects such sygs.stdout

XRangeType
The type of range objects returnedxnange()

SliceType
The type of objects returned Isice()

EllipsisType
The type ofEllipsis

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

3.3 UserDict — Class wrapper for dictionary objects.

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviours to dictionaries.

TheUserDict module defines theserDict class:

UserDict ()
Return a class instance that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which
is accessible via théata attribute ofUserDict instances.

data
A real dictionary used to store the contents oftheerDict class.

3.4 UserList — Class wrapper for list objects.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviours to lists.

TheUserList module defines thelserList class:

UserList ([Iist])
Return a class instance that simulates a list. The instance’s contents are kept in a regular list, which is accessible
via thedata attribute ofUserList instances. The instance’s contents are initially set to a cofdisiof
defaulting to the empty lisf] . list can be either a regular Python list, or an instanc&sérList (or a
subclass).

data
A real Python list object used to store the contents oltberList class.

30 Chapter 3. Python Services

3.5 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, Y) is equivalent to the expressiorty . The function names are those used for
special class methods; variants without leading and trailing are also provided for convenience.

Theoperator module defines the following functions:

add(a, b
__add__(a, b
Returna + b, for aandb numbers.

sub (a, b)
__sub__(a,b
Returna- b.

mul (a, b)
__mul__(a,b
Returna* b, for a andb numbers.

div (a, b
_div __(a,b
Returna/ b.

mod(a, b)
__mod__(a,b
Returna %b.

neg(o)
__neg__(0)
Returno negated.

pos (0)
__pos__(0)
Returno positive.

abs (0)
__abs__(0)
Return the absolute value of

inv (0)
__inv __(0)
Return the inverse dd.

Ishift (a, b
__Ishift __(a,b
Returna shifted left byb.

rshit (a, b
__rshit __(a, b
Returna shifted right byb.

and_(a, b
__and__(a,b
Return the bitwise and & andb.

or _(a, b
__or__(ab
Return the bitwise or o andb.

xor (a, b)

3.5. operator — Standard operators as functions. 31

__xor __(a,b
Return the bitwise exclusive or afandb.

not _(0)
__not __(0)
Return the outcome afot o.

truth (o)
Returnl if ois true, and O otherwise.

concat (a,b)
__concat __(a,b
Returna + b for aandb sequences.

repeat (a, b
__repeat __(a,b
Returna* b whereais a sequence ardlis an integer.

contains (a, b
sequencelncludes (a, b
Return the outcome of the tdsin a. Note the reversed operands.

countOf (a, b)
Return the number of occurrencestah a.

indexOf (a, b)
Return the index of the first of occurrenceloih a.

getitem (a, b
__getitem __(a,b)
Return the value o at indexb.

setitem (a, b, 9
__setitem __(a,b,9
Set the value o at indexb to c.

delitem (a, b
__delitem __(a,b)
Remove the value daf at indexb.

getslice (a,b,9
__getslice __(a,b,Q
Return the slice o& from indexb to indexc-1 .

setslice (a,b,c,y
__setslice __(a,b,c,y
Set the slice o& from indexb to indexc-1 to the sequence

delslice (a,b,9
__delslice __(a,b,9
Delete the slice of from indexb to indexc-1 .

Example: Build a dictionary that maps the ordinals fr@rto 256 to their character equivalents.

>>> import operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

32 Chapter 3. Python Services

3.6 traceback — Print or retrieve a stack traceback.

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vayatdas _traceback
andsys.last _traceback and returned as the third item frosys.exc _info()

The module defines the following functions:

print _tb (tracebacl{, Iimit[, fiIe]])
Print up tolimit stack trace entries frortnaceback If limit is omitted orNone, all entries are printed. file
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object to
receive the output.

print _exception (type, value, traceba{klimit[, file]])
Print exception information and up tamit stack trace entries frortracebackto file. This differs from
print _tb() inthe following ways: (1) iftracebackis notNone, it prints a headerTraceback (inner-
most last): ’; (2) it prints the exceptiontlypeandvalueafter the stack trace; (3) tfpeis SyntaxError
andvaluehas the appropriate format, it prints the line where the syntax error occurred with a caret indicating
the approximate position of the error.

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file)'. (In fact, it usessys.exc _info() to retrieve the same infor-
mation in a thread-safe way.)

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file)’.

print _stack ([f[, imit[, file]]])
This function prints a stack trace from its invocation point. The optidnatgument can be used to spec-
ify an alternate stack frame to start. The optiohalit and file arguments have the same meaning as for
print _exception()

extract _tb (tracebacl{, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback trajeeback
It is useful for alternate formatting of stack traces.liffiit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilenfame line number function nametexy representing the
information that is usually printed for a stack trace. Thrtis a string with leading and trailing whitespace
stripped; if the source is not available ithine.

extract _stack ([f[Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same formatxas for
tract _tb() . The optionaf andlimit arguments have the same meaning apfort _stack()

format _list (list)
Given a list of tuples as returned lextract _tb() orextract _stack() , return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is notNone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last _type andsys.last _value . The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, 8mtaxError exceptions, it contains several lines
that (when printed) display detailed information about where the syntax error occurred. The message indicating

3.6. traceback — Print or retrieve a stack traceback. 33

which exception occurred is the always last string in the list.

format _exception (type, value, t[J, Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments t@rint _exception() . The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are contatenated and printed, exactly the same text is printed as
doesprint _exception()

format _tb (tb[, limit)

A shorthand foformat _list(extract _tb(tb, limit)) .
format _stack ([f[, limit]])
A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (tb)
This function returns the current line number set in the traceback object. This is normally the same as the
tb.tb _lineno field of the object, but when optimization is used (the -O flag) this field is not updated correctly;
this function calculates the correct value.

A simple example follows:

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")

try:
exec source in envdir
except:
print "Exception in user code:"
print ’-*60
traceback.print_exc(file=sys.stdout)
print '-*60
envdir = {}
while 1:

run_user_code(envdir)

3.7 pickle — Python object serialization

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, marshalling or
flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream of bytes (and back:
“unpickling”). This is a more primitive notion than persistency — althopitkle reads and writes file objects, it

does not handle the issue of naming persistent objects, nor the (even more complicated) area of concurrent access to
persistent objects. Thaickle module can transform a complex object into a byte stream and it can transform the
byte stream into an object with the same internal structure. The most obvious thing to do with these byte streams is to
write them onto a file, but it is also conceivable to send them across a network or store them in a database. The module
shelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

Note: Thepickle module is rather slow. A reimplementation of the same algorithm in C, which is up to 1000 times
faster, is available as th#Pickle module. This has the same interface exceptfhieitler —andUnpickler are
factory functions, not classes (so they cannot be used as base classes for inheritance).

Unlike the built-in modulemarshal , pickle handles the following correctly:

e recursive objects (objects containing references to themselves)

34 Chapter 3. Python Services

e object sharing (references to the same object in different places)

e user-defined classes and their instances

The data format used Ipickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printablescii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printablell (and of some other characteristicsptkle 's
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value fointhe
argument to th&ickler constructor or thelump() anddumps() functions. The binary format is not the default
because of backwards compatibility with the Python 1.4 pickle module. In a future version, the default may change to
binary.

Thepickle module doesn’t handle code objects, whichitmershal module does. | suppogeckle could, and
maybe it should, but there’s probably no great need for it right now (as lomgeashal continues to be used for
reading and writing code objects), and at least this avoids the possibility of smuggling Trojan horses into a program.

For the benefit of persistency modules written uspickle , it supports the notion of a reference to an object
outside the pickled data stream. Such objects are referenced by a name, which is an arbitrary string of gsiniiable
characters. The resolution of such names is not defined bgitkke module — the persistent object module will
have to implement a methqubrsistent _load() . To write references to persistent objects, the persistent module
must define a methqggersistent _id() which returns eitheNone or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables must be
picklable.

When a pickled class instance is unpickled, itsinit __() method is normallynot invoked. Note: This is a
deviation from previous versions of this module; the change was introduced in Python 1.5b2. The reason for the
change is that in many cases it is desirable to have a constructor that requires arguments; it is a (minor) nuisance to
have to provide a_getinitargs _ () method.

If it is desirable that the__init __() method be called on unpickling, a class can define a method
__Qgetinitargs __() , which should return &uple containing the arguments to be passed to the class construc-
tor (__init __()). This method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

Classes can further influence how their instances are pickled — if the class defines the magbtsate __()

it is called and the return state is pickled as the contents for the instance, and if the class defines the method
__setstate __() , itis called with the unpickled state. (Note that these methods can also be used to implement
copying class instances.) If there is nogetstate __() method, the instance’s_dict __ is pickled. If there
isno__setstate __() method, the pickled object must be a dictionary and its items are assigned to the new in-
stance’s dictionary. (If a class defines bathgetstate __() and__setstate __() , the state object needn't be

a dictionary — these methods can do what they want.) This protocol is also used by the shallow and deep copying
operations defined in theopy module.

Note that when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods and still load objects
that were created with an earlier version of the class. If you plan to have long-lived objects that will see many versions
of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can be made by the
class’s__setstate __() method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-imported by the
unpickling process. Therefore, the restriction that the class must be defined at the top level in a module applies to

3.7. pickle — Python object serialization 35

pickled classes as well.
The interface can be summarized as follows.

To pickle an objeck onto a filef , open for writing:

p = pickle.Pickler(f)
p.dump(x)

A shorthand for this is:

pickle.dump(x, f)

To unpickle an object from a filef , open for reading:

pickle.Unpickler(f)
u.load()

A shorthand is:

x = pickle.load(f)

The Pickler class only calls the methddwrite() with a string argument. Thenpickler calls the meth-
odsf.read() (with an integer argument) arfdeadline() (without argument), both returning a string. It is
explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for thPickler class has an optional second argumbint, If this is present and nonzero, the binary
pickle format is used; if it is zero or absent, the (less efficient, but backwards compatible) text pickle format is used.
The Unpickler class does not have an argument to distinguish between binary and text pickle formats; it accepts
either format.

The following types can be pickled:

e None

e integers, long integers, floating point numbers

e strings

e tuples, lists and dictionaries containing only picklable objects
e classes that are defined at the top level in a module

e instances of such classes whasalict __ or __setstate __() is picklable

Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspecified
number of bytes may have been written to the file.

It is possible to make multiple calls to tlleimp() method of the samPickler instance. These must then be
matched to the same number of calls toltheed() method of the correspondingnpickler instance. If the same
object is pickled by multiplelump() calls, theload() will all yield references to the same objettarning this

is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify
an object and then pickle it again using the sd&iekler instance, the object is not pickled again — a reference to

36 Chapter 3. Python Services

it is pickled and thdJnpickler will return the old value, not the modified one. (There are two problems here: (a)
detecting changes, and (b) marshalling a minimal set of changes. | have no answers. Garbage Collection may also
become a problem here.)

Apart from thePickler andUnpickler classes, the module defines the following functions, and an exception:

dump(object, fild, bin])
Write a pickled representation abectto the open file objectile. This is equivalent toPickler(file,
bin).dump(objec) . If the optionalbin argument is present and nonzero, the binary pickle format is used; if
it is zero or absent, the (less efficient) text pickle format is used.

load (file)
Read a pickled object from the open file objélel This is equivalent toUnpickler(file).load() .

dumps(objec{, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the offtional
argument is present and nonzero, the binary pickle format is used; if it is zero or absent, the (less efficient) text
pickle format is used.

loads (string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled object’s represen-
tation are ignored.

PicklingError
This exception is raised when an unpicklable object is passBakber.dump()

See Also:

3.9: Modulecopy _reg (pickle interface constructor registration)
3.10: Moduleshelve (indexed databases of objects; upgkle)
3.11: Modulecopy (shallow and deep object copying)

3.12: Modulemarshal (high-performance serialization of built-in types)

3.8 cPickle — Alternate implementation of pickle

ThecPickle module provides a similar interface and identical functionality agptbele module, but can be up
to 1000 times faster since it is implemented in C. The only other important difference to noteR&ctiat() and
Unpickler() are functions and not classes, and so cannot be subclassed. This should not be an issue in most cases.

The format of the pickle data is identical to that produced usingttide module, so it is possible to ugéckle
andcPickle interchangably with existing pickles.

(Since the pickle data format is actually a tiny stack-oriented programming language, and there are some freedoms in
the encodings of certain objects, it's possible that the two modules produce different pickled data for the same input
objects; however they will always be able to read each others pickles back in.)

3.9 copy _reg — Register pickle support functions

Thecopy _reg module provides support for thckle andcPickle modules. Theopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor.

pickle (type, functimﬁ, constructoﬂ)

3.8. cPickle — Alternate implementation of pickle 37

Declares thatunctionshould be used as a “reduction” function for objects of type or digses functionshould
return either a string or a tuple. The optiocahstructorparameter, if provided, is a callable object which can
be used to reconstruct the object when called with the tuple of arguments returfeettignat pickling time.

3.10 shelve — Python object persistency

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)

in a shelf can be essentially arbitrary Python objects — anything thatithee module can handle. This includes

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

To summarize the interfac&dy is a string,data is an arbitrary object):

import shelve
d = shelve.open(flename) # open, with (g)dbm filename -- no suffix

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

Restrictions:

e The choice of which database package will be used (fagnor gdbm) depends on which interface is available.

Therefore it is not safe to open the database directly usiimy The database is also (unfortunately) subject to
the limitations ofdbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk.

Theshelve module does not suppartbncurrentread/write access to shelved objects. (Multiple simultaneous

read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. WX file locking can be used to solve this, but this differs acrossxUversions and

requires knowledge about the database implementation used.

See Also:

7.7: Moduleanydbm (Generic interface tdbm-style databases.)

7.9: Moduledbhash (BSD db database interface.)

8.5: Moduledbm (Standard Wix database interface.)

7.8: Moduledumbdbm (Portable implementation of tldbminterface.)

8.6: Modulegdbm (GNU database interface, based ondheninterface.)

3.7: Modulepickle (Object serialization used kshelve .)

3.8: ModulecPickle (High-performance version gfickle)

38 Chapter 3. Python Services

3.11 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

X
X

copy.copy(y) # make a shallow copy of y
copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

e A shallow copyconstructs a new compound object and then (to the extent possible) meferémcesnto it to
the objects found in the original.

e A deep copyonstructs a new compound object and then, recursively, insgptesinto it of the objects found
in the original.

Two problems often exist with deep copy operations that don't exist with shallow copy operations:

e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

e Because deep copy copiegerythingit may copy too much, e.g., administrative data structures that should be
shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memo” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, nor stack trace, stack frame, nor file, socket,
window, nor array, nor any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods called
__getinitargs _ () ,__getstate __() and__setstate __() . See the description of modutéckle for
information on these methods. Thepy module does not use tlwepy _reg registration module.

In order for a class to define its own copy implementation, it can define special methedpy __() and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments are
passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the__deepcopy __() implementation needs to make a deep copy of a component, it should cadlepeopy()

function with the component as first argument and the memo dictionary as second argument.

See Also:
3.7: Modulepickle (Discussion of the special disciplines used to support object state retrieval and restoration.)
3.12 marshal — Alternate Python object serialization

3.11. copy — Shallow and deep copy operations 39

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely doés).

This is not a general “persistency” module. For general persistency and transfer of Python objects through RPC calls,
see the modulepickle andshelve . Themarshal module exists mainly to support reading and writing the
“pseudo-compiled” code for Python modules giy/c’ files.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are supp¢otes]:integers, long

integers, floating point numbers, strings, tuples, lists, dictionaries, and code objects, where it should be understood
that tuples, lists and dictionaries are only supported as long as the values contained therein are themselves supported;
and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. Since the coraesttal module uses 32 bits to transfer

plain Python integers, such values are silently truncated. This particularly affects the use of very long integer literals
in Python modules — these will be accepted by the parser on such machines, but will be silently be truncated when
the module is read from thepyc’ instead?

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, fil§
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout or returned bypen() or posix.popen()

If the value has (or contains an object that has) an unsupported tyjadyeError exception is raised — but
garbage data will also be written to the file. The object will not be properly read baldady)

load (file)
Read one value from the open file and return it. If no valid value is read, E&)$¢Error , ValueError or
TypeError . The file must be an open file object.

Warning: If an object containing an unsupported type was marshalledduithp() , load() will substitute
None for the unmarshallable type.

dumps(value
Return the string that would be written to a file Bymp(value file) . The value must be a supported type.
Raise avalueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, reis@FError , ValueError or TypeError
Extra characters in the string are ignored.

3.13 imp — Access the import internals

This module provides an interface to the mechanisms used to implememigibe statement. It defines the follow-
ing constants and functions:

get _magic ()
Return the magic string value used to recognize byte-compiled code fipgs' files). (This value may be

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution would benatshtie
module raise an exception when an integer value would be truncated. At least one of these solutions will be implemented in a future version.

40 Chapter 3. Python Services

different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has thé $offrx mode
type , wheresuffixis a string to be appended to the module name to form the filename to searafotte,
is the mode string to pass to the builtépen() function to open the file (this can be for text files or
rb’ for binary files), andypeis the file type, which has one of the value¥_SOURCHEY_COMPILED or
C_EXTENSION described below.

find _module (name[, path])
Try to find the modulenameon the search patpath If pathis a list of directory names, each directory is
searched for files with any of the suffixes returnedgey _suffixes() above. Invalid names in the list are
silently ignored (but all list items must be strings) pHthis omitted orNone, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name C_BUILTIN), then a frozen moduléPY_FROZEN, and on some systems some other places are
looked in as well (on the Mac, it looks for a resour€@(RESOURQEon Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a tripfile, pathname descriptior) wherefile is an open file

object positioned at the beginningathnameis the pathname of the file found, adéscriptionis a triple as
contained in the list returned tget _suffixes() describing the kind of module found. If the module does

not live in a file, the returnefile is None, filenameis the empty string, and thaescriptiontuple contains empty

strings for its suffix and mode; the module type is as indicate in parentheses dabove. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In ordePtdAfine.,
submoduleM of packageP, usefind _module() andload _module() to find and load package, and
then usdind _module() with the pathargument set t&. __path __. WhenP itself has a dotted name,
apply this recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously foundfioyd _module() (or by an otherwise conducted search yielding
compatible results). This function does more than importing the module: if the module was already imported, it
is equivalentto aeload() ! Thenameargument indicates the full module name (including the package name,
if this is a submodule of a package). Tfile argument is an open file, aritenameis the corresponding file
name; these can done and” , respectively, when the module is not being loaded from a file.dEseription
argument is a tuple as returnedfoyd _module() describing what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (ispattError)
is raised.

Important: the caller is responsible for closing tfike argument, if it was noNone, even when an exception
is raised. This is best done usingra ... finally statement.

new_module (namg
Return a new empty module object callegime This object ismotinserted insys.modules

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

3.13. imp — Access the import internals 41

PKG DIRECTORY
The module was found as a package directory.

C_BUILTIN
The module was found as a built-in module.
PY_FROZEN

The module was found as a frozen module (ete _frozen()).

The following constant and functions are obsolete; their functionality is available thrngjh _module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin (namg
Initialize the built-in module calledameand return its module object. If the module was already initialized, it
will be initialized again A few modules cannot be initialized twice — attempting to initialize these again will
raise arimportError ~ exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module calledameand return its module object. If the module was already initialized,
it will be initialized again If there is no frozen module callesthme None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python'freezeutility. See Tools/freeze/’ for now.)

is _builtin (nam§
Returnl if there is a built-in module calledamewhich can be initialized again. Retush if there is a built-in
module callechamewhich cannot be initialized again (sedt _builtin()). ReturnQ if there is no built-in
module callechame

is _frozen (nam§g
Returnl if there is a frozen module (séat _frozen()) calledname or 0 if there is no such module.

load _compiled (name, pathname, file
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializegigain The nameargument is used to create or access a
module object. Th@athnameargument points to the byte-compiled code file. Tileargument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load _dynamic (name, pathnan{efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializeabain Some modules don't like that and may raise
an exception. Thpathnameargument must point to the shared library. Tieeneargument is used to construct
the name of the initialization function: an external C function calie&t * namd) ' in the shared library is
called. The optiondlfile argment is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load _source (nhame, pathname, file
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain The nameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thile argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffigyc’ or ‘ .pyo’) exists, it will be used instead of
parsing the given source file.

Examples

42 Chapter 3. Python Services

The following function emulates what was the standard import statement up to Python 1.4 (i.e., no hierarchical mod-
ule names). (Thismplementatiorwouldn’t work in that version, sincnd _module() has been extended and
load _module() hasbeenaddedin1.4.)

import imp import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(hame, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and incluelead) function can be
found in the standard modulamee (which is intended as an example only — don’t rely on any part of it being a
standard interface).

3.14 parser — Access parse trees for Python code

Theparser module provides an interface to Python’s internal parser and byte-code compiler. The primary purpose
for this interface is to allow Python code to edit the parse tree of a Python expression and create executable code from
this. This is better than trying to parse and modify an arbitrary Python code fragment as a string because parsing is
performed in a manner identical to the code forming the application. It is also faster.

There are a few things to note about this module which are important to making use of the data structures created.
This is not a tutorial on editing the parse trees for Python code, but some examples of ugiagsttre module are
presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is required. For
full information on the language syntax, refer to fgthon Language Referenc&he parser itself is created from

a grammar specification defined in the fi@rammar/Grammar’ in the standard Python distribution. The parse trees
stored in the AST objects created by this module are the actual output from the internal parser when created by
theexpr() orsuite() functions, described below. The AST objects createddguence2ast() faithfully

simulate those structures. Be aware that the values of the sequences which are considered “correct” will vary from one
version of Python to another as the formal grammar for the language is revised. However, transporting code from one
Python version to another as source text will always allow correct parse trees to be created in the target version, with
the only restriction being that migrating to an older version of the interpreter will not support more recent language
constructs. The parse trees are not typically compatible from one version to another, whereas source code has always
been forward-compatible.

Each element of the sequences returned$tlist() or ast2tuple() has a simple form. Sequences rep-
resenting non-terminal elements in the grammar always have a length greater than one. The first element is an in-

3.14. parser — Access parse trees for Python code 43

teger which identifies a production in the grammar. These integers are given symbolic names in the C header file
‘Include/graminit.h’ and the Python moduleymbol . Each additional element of the sequence represents a compo-
nent of the production as recognized in the input string: these are always sequences which have the same form as the
parent. An important aspect of this structure which should be noted is that keywords used to identify the parent node
type, such as the keywoifl in anif _stmt , are included in the node tree without any special treatment. For exam-

ple, theif keyword is represented by the tugle 'if") , wherel is the numeric value associated with JAME

tokens, including variable and function names defined by the user. In an alternate form returned when line number
information is requested, the same token might be representéd &g, 12) , Where thel2 represents the line

number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child elements and the addition of the
source text which was identified. The example of ihe keyword above is representative. The various types of
terminal symbols are defined in the C header fitelude/token.h’ and the Python modul®ken .

The AST objects are not required to support the functionality of this module, but are provided for three purposes:
to allow an application to amortize the cost of processing complex parse trees, to provide a parse tree representation
which conserves memory space when compared to the Python list or tuple representation, and to ease the creation of
additional modules in C which manipulate parse trees. A simple “wrapper” class may be created in Python to hide the
use of AST objects.

Theparser module defines functions for a few distinct purposes. The most important purposes are to create AST
objects and to convert AST objects to other representations such as parse trees and compiled code objects, but there
are also functions which serve to query the type of parse tree represented by an AST object.

Creating AST Objects

AST objects may be created from source code or from a parse tree. When creating an AST object from source,
different functions are used to create teeal’ and’exec’ forms.

expr (string)
Theexpr() function parses the parametgring as if it were an input tocompile(string, 'eval’)
If the parse succeeds, an AST object is created to hold the internal parse tree representation, otherwise an
appropriate exception is thrown.

suite (' string)
Thesuite() function parses the parametdring as if it were an input tocompile(string, 'exec’)
If the parse succeeds, an AST object is created to hold the internal parse tree representation, otherwise an
appropriate exception is thrown.

sequence2ast (sequence
This function accepts a parse tree represented as a sequence and builds an internal representation if possible.
If it can validate that the tree conforms to the Python grammar and all nodes are valid node types in the host
version of Python, an AST object is created from the internal representation and returned to the called. If there is
a problem creating the internal representation, or if the tree cannot be valid&adseaError ~ exception is
thrown. An AST object created this way should not be assumed to compile correctly; normal exceptions thrown
by compilation may still be initiated when the AST object is passecotopileast() . This may indicate
problems not related to syntax (such ademoryError exception), but may also be due to constructs such as
the result of parsingel f(0) , which escapes the Python parser but is checked by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element lists of {ie¢ form
‘'name’) or as three-element lists of the for(h, 'name’, 56) . If the third element is present, it is
assumed to be a valid line number. The line number may be specified for any subset of the terminal symbols in
the input tree.

tuple2ast (sequence
This is the same function agquence2ast() . This entry point is maintained for backward compatibility.

44 Chapter 3. Python Services

Converting AST Objects

AST objects, regardless of the input used to create them, may be converted to parse trees represented as list- or tuple-
trees, or may be compiled into executable code objects. Parse trees may be extracted with or without line numbering
information.

ast2list (ast[, Iine_info])
This function accepts an AST object from the calleastand returns a Python list representing the equivelent
parse tree. The resulting list representation can be used for inspection or the creation of a new parse tree in list
form. This function does not fail so long as memory is available to build the list representation. If the parse
tree will only be used for inspectioast2tuple() should be used instead to reduce memory consumption
and fragmentation. When the list representation is required, this function is significantly faster than retrieving a
tuple representation and converting that to nested lists.

If line_info is true, line number information will be included for all terminal tokens as a third element of the
list representing the token. Note that the line number provided specifies the line on which thendkerhis
information is omitted if the flag is false or omitted.

ast2tuple (ast[, Iine,info])
This function accepts an AST object from the calleagtand returns a Python tuple representing the equivelent
parse tree. Other than returning a tuple instead of a list, this function is identestiost()

If line_info is true, line number information will be included for all terminal tokens as a third element of the list
representing the token. This information is omitted if the flag is false or omitted.

compileast (ast[, filename = ’<ast>’])
The Python byte compiler can be invoked on an AST object to produce code objects which can be used as
part of anexec statement or a call to the built-eval() function. This function provides the interface to
the compiler, passing the internal parse tree fastto the parser, using the source file name specified by the
filenameparameter. The default value supplied fitenameindicates that the source was an AST object.

Compiling an AST object may result in exceptions related to compilation; an example woulsylodexEr-

ror caused by the parse tree gl f(0) : this statement is considered legal within the formal grammar for
Python but is not a legal language construct. BlyataxError raised for this condition is actually generated
by the Python byte-compiler normally, which is why it can be raised at this point hyattser module. Most
causes of compilation failure can be diagnosed programmatically by inspection of the parse tree.

Queries on AST Objects

Two functions are provided which allow an application to determine if an AST was created as an expression or a suite.
Neither of these functions can be used to determine if an AST was created from source @ghe(Yia or suite()
or from a parse tree visequence2ast()

isexpr (as)
Whenastrepresents aleval’ form, this function returns true, otherwise it returns false. This is useful, since
code objects normally cannot be queried for this information using existing built-in functions. Note that the
code objects created lmpmpileast() cannot be queried like this either, and are identical to those created
by the built-incompile() function.

issuite (asi
This function mirrordgsexpr() in that it reports whether an AST object representsearc’ form, com-

monly known as a “suite.” It is not safe to assume that this function is equivelenotoisexpr(asf) ’, as
additional syntactic fragments may be supported in the future.

Exceptions and Error Handling

3.14. parser — Access parse trees for Python code 45

The parser module defines a single exception, but may also pass other built-in exceptions from other portions of the
Python runtime environment. See each function for information about the exceptions it can raise.

ParserError
Exception raised when a failure occurs within the parser module. This is generally produced for validation
failures rather than the built iByntaxError thrown during normal parsing. The exception argument is either
a string describing the reason of the failure or a tuple containing a sequence causing the failure from a parse
tree passed teequence2ast() and an explanatory string. Calls $equence2ast() need to be able to
handle either type of exception, while calls to other functions in the module will only need to be aware of the
simple string values.

Note that the functionsompileast() ,expr() ,andsuite() may throw exceptions which are normally thrown

by the parsing and compilation process. These include the built in excepiem®ryError , OverflowError
SyntaxError , andSystemError . In these cases, these exceptions carry all the meaning normally associated
with them. Refer to the descriptions of each function for detailed information.

AST Objects

AST objects returned bgxpr() ,suite() andsequence2ast() have no methods of their own.

Ordered and equality comparisons are supported between AST objects. Pickling of AST objects (usicigehe
module) is also supported.

ASTType
The type of the objects returned bypr() ,suite() andsequence2ast()

AST objects have the following methods:

compile ([filenamd)
Same agompileast(ast filenamg.

isexpr ()

Same assexpr(asf .
issuite ()

Same asssuite(asi) .

tolist ([line_info])
Same asist2list(ast line_info) .

totuple ([Iine_info])
Same asst2tuple(ast line_info) .

Examples

The parser modules allows operations to be performed on the parse tree of Python source code before the bytecode
is generated, and provides for inspection of the parse tree for information gathering purposes. Two examples are
presented. The simple example demonstrates emulationodthpile() built-in function and the complex example

shows the use of a parse tree for information discovery.

Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest operation is to
do nothing. For this purpose, using tharser module to produce an intermediate data structure is equivelent to the
code

46 Chapter 3. Python Services

>>> code = compile(a + 5, 'eval’)

>>> g = 5
>>> eval(code)
10

The equivelent operation using tparser module is somewhat longer, and allows the intermediate internal parse
tree to be retained as an AST object:

>>> jmport parser

>>> ast = parser.expr(a + 5)
>>> code = parser.compileast(ast)
>>> g = 5

>>> eval(code)

10

An application which needs both AST and code objects can package this code into readily available functions:

import parser

def load_suite(source_string):
ast = parser.suite(source_string)
code = parser.compileast(ast)
return ast, code

def load_expression(source_string):
ast = parser.expr(source_string)
code = parser.compileast(ast)
return ast, code

Information Discovery

Some applications benefit from direct access to the parse tree. The remainder of this section demonstrates how the
parse tree provides access to module documentation defined in docstrings without requiring that the code being exam-
ined be loaded into a running interpreter in@port . This can be very useful for performing analyses of untrusted
code.

Generally, the example will demonstrate how the parse tree may be traversed to distill interesting information. Two
functions and a set of classes are developed which provide programmatic access to high level function and class
definitions provided by a module. The classes extract information from the parse tree and provide access to the
information at a useful semantic level, one function provides a simple low-level pattern matching capability, and the
other function defines a high-level interface to the classes by handling file operations on behalf of the caller. All source
files mentioned here which are not part of the Python installation are located ibé¢hw/parser/’ directory of the
distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but most modules need only a limited
measure of this when defining classes, functions, and methods. In this example, the only definitions that will be
considered are those which are defined in the top level of their context, e.g., a function defingef bgtatement at
column zero of a module, but not a function defined within a branch of an. else construct, though there are

some good reasons for doing so in some situations. Nesting of definitions will be handled by the code developed in
the example.

3.14. parser — Access parse trees for Python code 47

To construct the upper-level extraction methods, we need to know what the parse tree structure looks like and how
much of it we actually need to be concerned about. Python uses a moderately deep parse tree so there are a large
number of intermediate nodes. It is important to read and understand the formal grammar used by Python. This is
specified in the fileGrammar/Grammar’ in the distribution. Consider the simplest case of interest when searching for
docstrings: a module consisting of a docstring and nothing else. (Sedoftkring.py’.)

Some documentation.

Using the interpreter to take a look at the parse tree, we find a bewildering mass of numbers and parentheses, with the
documentation buried deep in nested tuples.

>>> import parser
>>> import pprint
>>> ast = parser.suite(open(’docstring.py’).read())
>>> tup = parser.ast2tuple(ast)
>>> pprint.pprint(tup)
(257,
(264,
(265,
(266,
(267,
(307,
(287,
(288,
(289,
(290,
(292,
(293,
(294,
(295,
(296,
(297,
(298,
(299,
(300, (3, ™"Some documentation.\O12"")N,
C))B
4, "),
©, ")

The numbers at the first element of each node in the tree are the node types; they map directly to terminal and non-
terminal symbols in the grammar. Unfortunately, they are represented as integers in the internal representation, and
the Python structures generated do not change that. Howeveyriigol andtoken modules provide symbolic

names for the node types and dictionaries which map from the integers to the symbolic names for the node types.

In the output presented above, the outermost tuple contains four elements: the2bfeged three additional tuples.

Node type257 has the symbolic namfide _input . Each of these inner tuples contains an integer as the first ele-
ment; these integer&64, 4, and0, represent the node typssnt , NEWLINE andENDMARKERespectively. Note

that these values may change depending on the version of Python you are using; epmsaltgy’ and ‘token.py’ for

details of the mapping. It should be fairly clear that the outermost node is related primarily to the input source rather
than the contents of the file, and may be disregarded for the momentstihe node is much more interesting. In
particular, all docstrings are found in subtrees which are formed exactly as this node is formed, with the only difference
being the string itself. The association between the docstring in a similar tree and the defined entity (class, function,
or module) which it describes is given by the position of the docstring subtree within the tree defining the described

48 Chapter 3. Python Services

structure.

By replacing the actual docstring with something to signify a variable component of the tree, we allow a simple
pattern matching approach to check any given subtree for equivelence to the general pattern for docstrings. Since the
example demonstrates information extraction, we can safely require that the tree be in tuple form rather than list form,
allowing a simple variable representation to[lvariable _name’] . A simple recursive function can implement

the pattern matching, returning a boolean and a dictionary of variable name to value mappings. (Seaenfile.py’.)

from types import ListType, TupleType

def match(pattern, data, vars=None):

if vars is None:
vars = {}

if type(pattern) is ListType:
vars[pattern[0]] = data
return 1, vars

if type(pattern) is not TupleType:
return (pattern == data), vars

if len(data) != len(pattern):
return O, vars

for pattern, data in map(None, pattern, data):
same, vars = match(pattern, data, vars)
if not same:

break
return same, vars

Using this simple representation for syntactic variables and the symbolic node types, the pattern for the candidate
docstring subtrees becomes fairly readable. (Seedfikeriple.py’.)

import symbol
import token

DOCSTRING_STMT_PATTERN = (
symbol.stmt,
(symbol.simple_stmt,
(symbol.small_stmt,
(symbol.expr_stmt,
(symbol.testlist,
(symbol.test,
(symbol.and_test,
(symbol.not_test,
(symbol.comparison,
(symbol.expr,
(symbol.xor_expr,
(symbol.and_expr,
(symbol.shift_expr,
(symbol.arith_expr,
(symbol.term,
(symbol.factor,
(symbol.power,
(symbol.atom,
(token.STRING, ['docstring’])
MMNMMMN),
(token.NEWLINE, ")

)

3.14. parser — Access parse trees for Python code 49

Using thematch() function with this pattern, extracting the module docstring from the parse tree created previously
is easy:

>>> found, vars = match(DOCSTRING_STMT_PATTERN, tup[1])
>>> found

1

>>> vars

{'docstring”: "™"Some documentation.\012"""}

Once specific data can be extracted from a location where it is expected, the question of where information can be
expected needs to be answered. When dealing with docstrings, the answer is fairly simple: the docstring is the first
stmt nodeinacode blocKile _input orsuite node types). Amodule consists ofasinfile _input node,

and class and function definitions each contain exactlysoiite node. Classes and functions are readily identified

as subtrees of code block nodes which start \gtmt, (compound _stmt, (classdef, ... or (stmt,

(compound _stmt, (funcdef, Note that these subtrees cannot be matcheohditigh() since it does

not support multiple sibling nodes to match without regard to number. A more elaborate matching function could be
used to overcome this limitation, but this is sufficient for the example.

Given the ability to determine whether a statement might be a docstring and extract the actual string from the statement,
some work needs to be performed to walk the parse tree for an entire module and extract information about the names
defined in each context of the module and associate any docstrings with the names. The code to perform this work is
not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be somewhat more flexible. Each “major”
block of the module is described by an object providing several methods for inquiry and a constructor which accepts
at least the subtree of the complete parse tree which it representdlcthielnfo constructor accepts an optional
nameparameter since it cannot otherwise determine the name of the module.

The public classes includ€lassinfo , Functioninfo , and Modulelnfo . All objects provide the meth-
odsget _name() , get _docstring() , get _class _names() , andget _class _info() . TheClass-
Info objects supporget _method _names() and get _method _info() while the other classes provide
get _function _names() andget _function _info()

Within each of the forms of code block that the public classes represent, most of the required information is in the
same form and is accessed in the same way, with classes having the distinction that functions defined at the top level
are referred to as “methods.” Since the difference in nomenclature reflects a real semantic distinction from functions
defined outside of a class, the implementation needs to maintain the distinction. Hence, most of the functionality of
the public classes can be implemented in a common base SlaissinfoBase , with the accessors for function

and method information provided elsewhere. Note that there is only one class which represents function and method
information; this parallels the use of tdef statement to define both types of elements.

Most of the accessor functions are declare®uitelnfoBase and do not need to be overriden by subclasses.
More importantly, the extraction of most information from a parse tree is handled through a method called by the
SuitelnfoBase constructor. The example code for most of the classes is clear when read alongside the formal
grammar, but the method which recursively creates new information objects requires further examination. Here is the
relevant part of th&uitelnfoBase definition from ‘example.py’:

50 Chapter 3. Python Services

class SuitelnfoBase:
_docstring = "
_name =’

def __init_ (self, tree = None):
self._class_info = {}
self._function_info = {}
if tree:
self._extract_info(tree)

def _extract_info(self, tree):
extract docstring
if len(tree) == 2:
found, vars = match(DOCSTRING_STMT_PATTERNI1], tree[1])
else:
found, vars = match(DOCSTRING_STMT_PATTERN, tree[3])
if found:
self._docstring = eval(vars['docstring’])
discover inner definitions
for node in tree[l:]:
found, vars = match(COMPOUND_STMT_PATTERN, node)

if found:
cstmt = vars['’compound’]
if cstmt[0] == symbol.funcdef:

name = cstmt[2][1]

self._function_info[name] = Functioninfo(cstmt)
elif cstmt[0] == symbol.classdef:

name = cstmt[2][1]

self._class_info[name] = Classinfo(cstmt)

After initializing some internal state, the constructor calls tleatract _info() method. This method performs

the bulk of the information extraction which takes place in the entire example. The extraction has two distinct phases:
the location of the docstring for the parse tree passed in, and the discovery of additional definitions within the code
block represented by the parse tree.

The initial if test determines whether the nested suite is of the “short form” or the “long form.” The short form is
used when the code block is on the same line as the definition of the code block, as in

def square(x): "Square an argument.”; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make_power(exp):
"Make a function that raises an argument to the exponent ‘exp’."
def raiser(x, y=exp):
return x ** vy
return raiser

When the short form is used, the code block may contain a docstring as the first, and possidynaiily, stmt

element. The extraction of such a docstring is slightly different and requires only a portion of the complete pattern used
in the more common case. As implemented, the docstring will only be found if there is ongnale _stmt node

in thesimple _stmt node. Since most functions and methods which use the short form do not provide a docstring,
this may be considered sufficient. The extraction of the docstring proceeds usmgtittg) function as described

3.14. parser — Access parse trees for Python code 51

above, and the value of the docstring is stored as an attribute SlitelnfoBase object.

After docstring extraction, a simple definition discovery algorithm operates ostihie nodes of thesuite node.
The special case of the short form is not tested; since there atnto nodes in the short form, the algorithm will
silently skip the singlsimple _stmt node and correctly not discover any nested definitions.

Each statement in the code block is categorized as a class definition, function or method definition, or something else.
For the definition statements, the name of the element defined is extracted and a representation object appropriate to
the definition is created with the defining subtree passed as an argument to the constructor. The repesentation objects
are stored in instance variables and may be retrieved by name using the appropriate accessor methods.

The public classes provide any accessors required which are more specific than those provideSuitgline
foBase class, but the real extraction algorithm remains common to all forms of code blocks. A high-level function
can be used to extract the complete set of information from a source file. (Sezdille.py’.)

def get_docs(fileName):
source = open(fileName).read()
import os
basename = os.path.basename(os.path.splitext(fileName)[0])
import parser
ast = parser.suite(source)
tup = parser.ast2tuple(ast)
return Modulelnfo(tup, basename)

This provides an easy-to-use interface to the documentation of a module. If information is required which is not
extracted by the code of this example, the code may be extended at clearly defined points to provide additional capa-
bilities.

See Also:

3.15: Modulesymbol (useful constants representing internal nodes of the parse tree)

3.16: Moduletoken (useful constants representing leaf nodes of the parse tree and functions for testing node
values)

3.15 symbol — Constants used with Python parse trees

This module provides constants which represent the numeric values of internal nodes of the parse tree. Unlike most
Python constants, these use lower-case names. Refer to th@dilemar/Grammar’ in the Python distribution for the
defintions of the names in the context of the language grammar. The specific numeric values which the names map to
may change between Python versions.

This module also provides one additional data object:

sym_name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

See Also:

3.14: Moduleparser (second example uses this module)

3.16 token — Constants used with Python parse trees

52 Chapter 3. Python Services

This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal tokens).
Refer to the file Grammar/Grammar’ in the Python distribution for the defintions of the names in the context of the
language grammar. The specific numeric values which the names map to may change between Python versions.

This module also provides one data object and some functions. The functions mirror definitions in the Python C header
files.

tok _name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

ISTERMINAL(x)
Return true for terminal token values.

ISNONTERMINAL x)
Return true for non-terminal token values.

ISEOF(X)
Return true ifx is the marker indicating the end of input.

See Also:

3.14: Moduleparser (second example uses this module)

3.17 keyword — Testing for Python keywords

This module allows a Python program to determine if a string is a keyword. A single function is provided:

iskeyword (9
Return true ifsis a Python keyword.

3.18 tokenize — Tokenizer for Python source

The tokenize module provides a lexical scanner for Python source code, implemented in Python. The scanner
in this module returns comments as tokens as well, making it useful for implementing “pretty-printers,” including
colorizers for on-screen displays.

The scanner is exposed by a single function:

tokenize (readlind:, tokeneate])
Thetokenize() function accepts two parameters: one representing the input stream, and one providing an
output mechanism faokenize()

The first parametergadling must be a callable object which provides the same interface asdldéne()

method of built-in file objects (see section 2.1). Each call to the function should return one line of input as a
string.

The second parameta@gkeneater must also be a callable object. It is called with five parameters: the token
type, the token string, a tuplesrow, scol specifying the row and column where the token begins in the
source, a tupl€ erow, eco) giving the ending position of the token, and the line on which the token was
found. The line passed is tihagical line; continuation lines are included.

All constants from theéoken module are also exported frotokenize , as is one additional token type value that
might be passed to tlitekeneatefunction bytokenize()

COMMENT
Token value used to indicate a comment.

3.17. keyword — Testing for Python keywords 53

3.19 pyclbr — Python class browser support

Thepyclbr can be used to determine some limited information about the classes and methods defined in a module.
The information provided is sufficient to implement a traditional three-pane class browser. The information is extracted
from the source code rather than from an imported module, so this module is safe to use with untrusted source code.

readmodule (module[, path])
Read a module and return a dictionary mapping class names to class descriptor objects. The pamiukter
should be the name of a module as a string; it may be the name of a module within a packguethpasameter
should be a sequence, and is used to augment the vahys.gith |, which is used to locate module source
code.

Class Descriptor Objects

The class descriptor objects used as values in the dictionary returmeddiyodule() provide the following data
members:

module
The name of the module defining the class described by the class descriptor.

name
The name of the class.

super
A list of class descriptors which describe the immediate base classes of the class being described. Classes which
are named as superclasses but which are not discoverabéatijnodule() are listed as a string with the
class name instead of class descriptors.

methods
A dictionary mapping method names to line numbers.

file
Name of the file containing the class statement defining the class.

lineno
The line number of the class statement within the file namefildy .

3.20 code — Code object services.

Thecode module defines operations pertaining to Python code objects. It defines the following function:

compile _command source,[filenam({, symbo]])
This function is useful for programs that want to emulate Python'’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This &limaisin
always makes the same decision as the real interpreter main loop.

Arguments:sourceis the source strindilenameis the optional filename from which source was read, defaulting
to '<input>" ; andsymbolis the optional grammar start symbol, which should be eitsiegle’ (the
default) oreval’

Return a code object (the samecasnpile(source filename symbo)) if the command is complete and
valid; returnNone if the command is incomplete; raiSyntaxError if the command is a syntax error.

3.21 pprint — Data pretty printer.

54 Chapter 3. Python Services

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be

used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don't
fit within the allowed width. Construd®rettyPrinter objects explicitly if you need to adjust the width constraint.

Thepprint module defines one class:

PrettyPrinter (..)
Construct &PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using tkeeamkeyword; the only method used on the stream object is the file protocol’s
write() method. If not specified, therettyPrinter adoptssys.stdout . Three additional parameters
may be used to control the formatted representation. The keywordiscena depth andwidth. The amount
of indentation added for each recursive level is specifiethbgnt the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth if the data structure being printed is too deep, the next contained level is replaced by
‘ '. By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using theidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

>>> import pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stufff:])

>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)

'lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl1.5/sunos5’,
'fusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’],

"lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(

parser.suite(open(’'pprint.py’).read()))[1][1][1]

>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

(266, (267, (307, (287, (288, (...))N))

ThePrettyPrinter class supports several derivative functions:

pformat (objec)
Return the formatted representatiorobfectas a string. The default parameters for formatting are used.

pprint (objec{, stream])
Prints the formatted representation olbject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteachahs statement for in-
specting values. The default parameters for formatting are used.

3.21. pprint — Data pretty printer. 55

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

'lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/python1.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’]

isreadable (objec)
Determine if the formatted representationadijectis “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
0

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representation olbject protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be representedexgifsion on typename
with id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", '/usr/local/lib/pythonl1.5’, '/usr/loca
Illib/pythonl.5/test’, '/usr/local/lib/pythonl.5/sunos5’, ’/usr/local/lib/python
1.5/sharedmodules’, ’/usr/local/lib/pythonl.5/tkinter’]"

PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation afject This takes into Account the options passed to fet-
tyPrinter constructor.

pprint (objec)
Print the formatted representationalfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since ResttyPrinter objects don’t need to be created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval() . Note that this returns false for recursive objects. Ifdepthparameter of th@€rettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

56 Chapter 3. Python Services

3.22 repr — Alternate repr() implementation.

Therepr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

Repr ()
Class which provides formatting services useful in implementing functions similar to the brelp+if) ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

aRepr
This is an instance dRepr which is used to provide theepr() function described below. Changing the
attributes of this object will affect the size limits usedigpr() and the Python debugger.

repr (obj)
Thisis therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defa@ilt is

maxdict

maxlist

maxtuple
Limits on the number of entries represented for the named object type. The defaulixdict is 4, for the
others6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The defadt is

maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. Itis applied in a similar manner amxstring . The default i20.

repr (obj)
The equivalent to the built-irepr() that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used tgpr() . This uses the type abjto determine which formatting method to
call, passing ibbj andlevel The type-specific methods should a&prl() to perform recursive formatting,
with level - 1 for the value oflevelin the recursive call.

repr _typg obj, leve)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method nameypeis replaced bystring.join(string.split(type(obj). __name__, ') .
Dispatch to these methods is handledegrl() . Type-specific methods which need to recursively format a
value should callself.repri(subobj level - 1) .

3.22. repr — Alternate repr() implementation. 57

Subclassing Repr Objects

The use of dynamic dispatching Repr.repri() allows subclasses &tepr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in [<stdin>’, '<stdout>', '<stderr>']:
return obj.name
else:
return ‘obj*

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints '<stdin>’

3.23 py_compile — Compile Python source files.

Thepy _compile module provides a single function to generate a byte-code file from a source file.

Though not often needed, this function can be useful when installing modules for shared use, especially if some of the
users may not have permission to write the byte-code cache files in the directory containing the source code.

compile (file[, cfile], dfile]])
Compile a source file to byte-code and write out the byte-code cache file. The source code is loaded from the
file namefile. The byte-code is written tofile, which defaults tdile + 'c’ (o’ if optimization is enabled in
the current interpreter). tfileis specified, it is used as the name of the source file in error messages instead of

file.
See Also:
3.24: Modulecompileall (Utilities to compile all Python source files in a directory tree.)
3.24 compileall — Byte-compile Python libraries.

This module provides some utility functions to support installing Python libraries. These functions compile Python
source files in a directory tree, allowing users without permission to write to the libraries to take advantage of cached
byte-code files.

The source file for this module may also be used as a script to compile Python sources in directories named on the
command line or irsys.path

compile _dir (dir[, maxievelf, ddir]])
Recursively descend the directory tree namedliny compiling all “py’ files along the way. Thenaxlevels
parameter is used to limit the depth of the recursion; it default®tdf ddir is given, it is used as the base path
from which the filenames used in error messages will be generated.

compile _path ([skip_curdir[, maxleve@])
Byte-compile all the.py’ files found alongsys.path . If skip_curdir is true (the default), the current directory
is not included in the search. Timeaxlevelgparameter defaults 1@ and is passed to theompile _dir()

58 Chapter 3. Python Services

function.
See Also:

3.23: Modulepy _compile (Byte-compile a single source file.)

3.25 dis — Disassembler.

Thedis module supports the analysis of Python byte code by disassembling it. Since there is no Python assembler,
this module defines the Python assembly language. The Python byte code which this module takes as an input is
defined in the file Include/opcode.h’ and used by the compiler and the interpreter.

Example: Given the functiomyfunc :

def myfunc(alist):
return len(alist)

the following command can be used to get the disassembtyyfiinc()

>>> dis.dis(myfunc)

0 SET_LINENO 1
3 SET_LINENO 2

6 LOAD_GLOBAL 0 (len)
9 LOAD_FAST 0 (alist)
12 CALL_FUNCTION 1

15 RETURN_VALUE

16 LOAD_CONST 0 (None)

19 RETURN_VALUE

Thedis module defines the following functions:

dis ([bytesourcé)
Disassemble thbytesourcebject. bytesourcecan denote either a class, a method, a function, or a code object.
For a class, it disassembles all methods. For a single code sequence, it prints one line per byte code instruction.
If no object is provided, it disassembles the last traceback.

distb ([tb])
Disassembles the top-of-stack function of a traceback, using the last traceback if none was passed. The instruc-
tion causing the exception is indicated.

disassemble (code[, Iasti])
Disassembles a code object, indicating the last instructitasif was provided. The output is divided in the
following columns:

1.the current instruction, indicated as> ’,
2.a labelled instruction, indicated with>’,

3.the address of the instruction,

4.the operation code name,

5.operation parameters, and

6.interpretation of the parameters in parentheses.

3.25. dis — Disassembler. 59

The parameter interpretation recognizes local and global variable names, constant values, branch targets, and
compare operators.

disco (code[, Iasti])
A synonym for disassemble. It is more convenient to type, and kept for compatibility with earlier Python
releases.

opname
Sequence of a operation names, indexable using the byte code.

cmp_op
Sequence of all compare operation names.

hasconst
Sequence of byte codes that have a constant parameter.

hasname
Sequence of byte codes that access a attribute by name.

hasjrel
Sequence of byte codes that have a relative jump target.

hasjabs
Sequence of byte codes that have an absolute jump target.

haslocal
Sequence of byte codes that access a a local variable.

hascompare
Sequence of byte codes of boolean operations.

Python Byte Code Instructions

The Python compiler currently generates the following byte code instructions.

STOP_CODE
Indicates end-of-code to the compiler, not used by the interpreter.

POP_TOP
Removes the top-of-stack (TOS) item.

ROTTWO
Swaps the two top-most stack items.

ROT.THREE
Lifts second and third stack item one position up, moves top down to position three.

DUP_TOP
Duplicates the reference on top of the stack.

Unary Operations take the top of the stack, apply the operation, and push the result back on the stack.

UNARYPOSITIVE
ImplementsTOS = +TOS
UNARYNEG
ImplementsTOS = -TOS
UNARYNOT
ImplementsTOS = not TOS.
UNARY.CONVERT
ImplementsTOS = ‘TOS'.

60 Chapter 3. Python Services

UNARYINVERT
ImplementsTOS = "TOS

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from the stack. They
perform the operation, and put the result back on the stack.

BINARY_POWER
ImplementsTOS = TOS1 ** TOS

BINARY_MULTIPLY
ImplementsTOS = TOS1 * TOS

BINARY_DIVIDE
ImplementsTOS = TOS1 / TOS

BINARY_MODULO
ImplementsTOS = TOS1 %TQS

BINARY_ADD
ImplementsTOS = TOS1 + TOS

BINARY_SUBTRACT
ImplementsTOS = TOS1 - TOS

BINARY_SUBSCR
ImplementsTOS = TOS1[TOS].

BINARY_LSHIFT
ImplementsTOS = TOS1 << TOS

BINARY_RSHIFT
ImplementsTOS = TOS1 >> TOS

BINARY_AND

ImplementsTOS = TOS1 and TOS
BINARY_XOR

ImplementsTOS = TOS1 ~ TOS
BINARY_OR

ImplementsTOS = TOS1 or TOS
The slice opcodes take up to three parameters.

SLICE+0
ImplementsTOS

SLICE+1
ImplementsTOS

SLICE+2
ImplementsTOS

SLICE+3
ImplementsTOS = TOS2[TOS1:TOS].

Slice assignment needs even an additional parameter. As any statement, they put nothing on the stack.

STORESLICE+0
ImplementsTOS[:]] = TOS1 .

STORESLICE+1
ImplementsTOS1[TOS:] = TOS2.

STORESLICE+2

TOS[] .

TOS1[TOS] .

TOS1[:TOS1] .

3.25. dis — Disassembler. 61

ImplementsTOS1[:TOS] = TOS2.

STORESLICE+3
ImplementsTOS2[TOS1:TOS] = TOSS.

DELETE_SLICE+0
Implementgdel TOSJ:]

DELETE SLICE+1
Implementgdel TOS1[TOS:]

DELETE_SLICE+2
Implementsdel TOS1[:TOS]

DELETE_SLICE+3
Implementgdel TOS2[TOS1:.TOS] .

STORE.SUBSCR
ImplementsTOS1[TOS] = TOS2.
DELETE_SUBSCR
Implementgdel TOS1[TOS] .
PRINT_EXPR

Implements the expression statement for the interactive mode. TOS is removed from the stack and printed. In
non-interactive mode, an expression statement is terminateP@EhSTACK

PRINT_ITEM
Prints TOS. There is one such instruction for each item in the print statement.

PRINT_NEWLINE

Prints a new line orsys.stdout . This is generated as the last operation of a print statement, unless the
statement ends with a comma.

BREAK LOOP
Terminates a loop due to a break statement.

LOAD LOCALS

Pushes a reference to the locals of the current scope on the stack. This is used in the code for a class definition:
After the class body is evaluated, the locals are passed to the class definition.

RETURNVALUE
Returns with TOS to the caller of the function.

EXEC STMT
Implementsexec TOS2,TOS1,TOS . The compiler fills missing optional parameters with None.

POP_BLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested loops, try
statements, and such.

END_FINALLY
Terminates a finally-block. The interpreter recalls whether the exception has to be re-raised, or whether the
function returns, and continues with the outer-next block.

BUILD _CLASS
Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of the names of the base classes, and
TOS2 the class name.

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte last.

STORENAME namei
Implementsname = TOS nameiis the index ofnamein the attributeco _names of the code object. The
compiler tries to usSTORE.LOCALor STORE GLOBALIf possible.

62 Chapter 3. Python Services

DELETE_.NAME namei
Implementsdel name , wherenameiis the index intaco _names attribute of the code object.

UNPACKTUPLE count
Unpacks TOS int@ountindividual values, which are put onto the stack right-to-left.

UNPACKLIST count
Unpacks TOS int@ountindividual values.

STOREATTR namei
ImplementsTOS.name = TOS1 wherenameiis the index of name iso _names.

DELETE_ATTR namei
Implementgdel TOS.name , usingnameias index intaco _names.

STORE.GLOBAL namei
Works asSTORE.NAMEbut stores the name as a global.

DELETE_GLOBAL namei
Works asDELETE_NAMEDbut deletes a global name.

LOAD_CONST consti
Pushesco _consts[const] ' onto the stack.

LOAD NAME namei
Pushes the value associated witb : names[name] ' onto the stack.

BUILD_TUPLE count
Creates a tuple consumirguntitems from the stack, and pushes the resulting tuple onto the stack.

BUILD_LIST count
Works asBUILD _TUPLE but creates a list.

BUILD_MAP zero
Pushes an empty dictionary object onto the stack. The argument is ignored and set to zero by the compiler.

LOADATTR namei
Replaces TOS witlgetattr(TOS,co _names[hame] .

COMPAREOP opname
Performs a boolean operation. The operation name can be fownapbinop[opnamé.

IMPORT_NAME namei
Imports the moduleo _names[hame] . The module object is pushed onto the stack. The current name space
is not affected: for a proper import statement, a subseddiEMRE FAST instruction modifies the name space.

IMPORT_FROM namei
Imports the attributeo _names[name] . The module to import from is found in TOS and left there.

JUMP_FORWARDdelta
Increments byte code counter dglta

JUMPLIF _TRUE delta
If TOS is true, increment the byte code counterd®jta TOS is left on the stack.

JUMPLIF _FALSE delta
If TOS is false, increment the byte code countedejta TOS is not changed.

JUMP_ABSOLUTE target
Set byte code counter target

FOR_LOOP delta
Iterate over a sequence. TOS is the currentindex, TOS1 the sequence. First, the next element is computed. If the
sequence is exhausted, increment byte code countdeltyy Otherwise, push the sequence, the incremented

3.25. dis — Disassembler. 63

counter, and the current item onto the stack.

LOAD_GLOBAL namei
Loads the global namezb _names[name] onto the stack.

SETURLOOP delta
Pushes a block for a loop onto the block stack. The block spans from the current instruction with adgita of
bytes.

SETUP_EXCEPT delta
Pushes a try block from a try-except clause onto the block sthta points to the first except block.

SETUP_FINALLY delta
Pushes a try block from a try-except clause onto the block stidtapoints to the finally block.

LOADFAST var_num
Pushes a reference to the local_varnames[var_nuni onto the stack.

STOREFAST var_num
Stores TOS into the locab _varnames[var_nunj .

DELETE FAST var_num
Deletes locato _varnames[var_nuni .

SET_LINE _NO lineno
Sets the current line number lineno.

RAISE_VARARGS argc
Raises an exceptiorargc indicates the number of parameters to the raise statement, ranging from 1 to 3. The
handler will find the traceback as TOS2, the parameter as TOS1, and the exception as TOS.

CALL_FUNCTION argc
Calls a function. The low byte @frgcindicates the number of positional parameters, the high byte the number of
keyword parameters. On the stack, the opcode finds the keyword parameters first. For each keyword argument,
the value is on top of the key. Below the keyword parameters, the positional parameters are on the stack, with
the right-most parameter on top. Below the parameters, the function object to call is on the stack.

MAKE.FUNCTION argc
Pushes a new function object on the stack. TOS is the code associated with the function. The function object is
defined to havargc default parameters, which are found below TOS.

BUILD _SLICE argc
Pushes a slice object on the staelkgc must be 2 or 3. If itis 2slice(TOS1, TOS) is pushed; ifitis 3,
slice(TOS2, TOS1, TOS) s pushed. See thadice() built-in function.

3.26 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific modules
would place import site ' somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head partsifaupesfix and
sys.exec _prefix ;empty heads are skipped. For the tail part, it uses the empty string (on Macintosh or Windows)
or it uses firstlib/pythonversiorisite-packages’ and then lib/site-python’ (on UNIX). For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, addgdgath , and also inspected for path
configuration files.

A path configuration file is a file whose name has the fopackagepth’; its contents are additional items (one per

64 Chapter 3. Python Services

line) to be added teys.path . Non-existing items are never addedstgs.path , but no check is made that the
item refers to a directory (rather than a file). No item is addesytopath more than once. Blank lines and lines
beginning with# are skipped.

For example, supposys.prefix andsys.exec _prefix are setto/usr/local’. The Python 1.5.2 library is then
installed in fusr/local/lib/pythonl1.5" (note that only the first three characterssyk.version are used to form the
path name). Suppose this has a subdirectagy/local/lib/pythonl.5/site-packages’ with three subsubdirectoriesipb’,
‘bar’ and ‘spam’, and two path configuration filesfoo.pth’ and ‘bar.pth’. Assume foo.pth’ contains the following:

foo package configuration

foo
bar
bletch

and ar.pth’ contains:

bar package configuration

bar

Then the following directories are addedsigs.path , in this order:

/usr/local/lib/pythonl.5/site-packages/bar
lusr/local/lib/pythonl.5/site-packages/foo

Note that bletch’ is omitted because it doesn't exist; thaal’ directory precedes thddo’ directory becausebar.pth’
comes alphabetically beforéb.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration
file.

After these path manipulations, an attempt is made to import a module reteeastomize , which can perform
arbitrary site-specific customizations. If this import fails withlerportError ~ exception, it is silently ignored.

Note that for some non-MWix systemssys.prefix andsys.exec _prefix are empty, and the path manipula-
tions are skipped; however the importsifecustomize is still attempted.

3.27 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the $PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

import user

Theuser module looks for a file .pythonrc.py’ in the user's home directory and if it can be opened, exececutes it
(usingexecfile()) iniits own (i.e. the moduleser 's) global namespace. Errors during this phase are not caught;
that’s up to the program that imports theer module, if it wishes. The home directory is assumed to be named by

3.27. user — User-specific configuration hook 65

the SHOME environment variable; if this is not set, the current directory is used.

The user’s ‘pythonrc.py’ could conceivably test fosys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in ygythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in thpythonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variabfer.spam _verbose , as follows:

import user
try:

verbose = user.spam_verbose # user's verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shaubdimport this module; a user can easily break into a program by
placing arbitrary code in thegythonrc.py’ file.

Modules for general use shoutdtimport this module; it may interfere with the operation of the importing program.

See Also:

3.26: Modulesite (site-wide customization mechanism)

3.28 __builtin __ — Built-in functions

This module provides direct access to all ‘built-in” identifiers of Python; e.dauiltin -~ __.open is the full name

for the built-in functionopen() . See section 2.3, “Built-in Functions.”

3.29 _ _main __ — Top-level script environment.

This module represents the (otherwise anonymous) scope in which the interpreter's main program executes — com-
mands read either from standard input or from a script file.

66 Chapter 3. Python Services

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.
re Perl-style regular expression search and match operations.
regex Regular expression search and match operations.
regsub Substitution and splitting operations that use regular expressions.
struct Interpret strings as packed binary data.
StringlO Read and write strings as if they were files.
cStringlO Faster version aBtringlO , but not subclassable.
4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions. See the
modulere for string functions based on regular expressions.

The constants defined in this module are are:
digits
The string0123456789’

hexdigits
The string0123456789abcdefABCDEF’

letters
The concatenation of the stringavercase() = anduppercase() described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
"abcdefghijkimnopgrstuvwxyz’ . Do not change its definition — the effect on the routinpper()
andswapcase() is undefined.

octdigits
The string’01234567"

uppercase

A string containing all the characters that are considered uppercase letters. On most systems this is the string
"ABCDEFGHIJKLMNOPQRSTUVWXYDo not change its definition — the effect on the routifeser()
andswapcase() is undefined.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines
strip() andsplit() is undefined.

67

The functions defined in this module are:

atof ()
Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sigr-'(or ‘-). Note that this behaves identical to the built-in function
float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

atoi (9, basd])
Convert strings to an integer in the givebbase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘-). The basedefaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the siglx’ ‘or ‘OX’ means 16, 0’ means 8, anything else
means 10. Ibaseis 16, a leading0Ox’ or ‘0X’ is always accepted. Note that when invoked withbaseor
with baseset to 10, this behaves identical to the built-in functiotf) when passed a string. (Also note: for
a more flexible interpretation of numeric literals, use the built-in functieal() .)

atol (s[, basd)
Convert strings to a long integer in the givebase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘- ’). The baseargument has the same meaning asatoi() . Atrailing ‘I or ‘L’
is not allowed, except if the base is 0. Note that when invoked withas¢or with baseset to 10, this behaves
identical to the built-in functiomong() when passed a string.

capitalize (word)
Capitalize the first character of the argument.

capwords (9
Split the argument into words usirgplit() , capitalize each word usingapitalize() , and join the
capitalized words usingin() . Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

expandtabs (s, [tabsizd)
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sut[, starl{,end]])
Return the lowest index iswhere the substringubis found such thasubis wholly contained ir§[start end .
Return-1 on failure. Defaults fostartandendand interpretation of negative values is the same as for slices.

rfind (s, suki, starl{, end]])
Like find() but find the highest index.

index (s, sut{, starl[, end]])

Like find() butraiseValueError when the substring is not found.
rindex (s, suk{, start[, end]])

Like rfind() but raiseValueError ~ when the substring is not found.
count (s, suk{, starl{, end]])

Return the number of (non-overlapping) occurrences of substtib@ string g start end . Defaults forstart
andendand interpretation of negative values is the same as for slices.

lower (s)
Return a copy o§, but with upper case letters converted to lower case.

maketrans (from, tg
Return a translation table suitable for passintramslate() or regex.compile() , that will map each
character iffrominto the character at the same positiondnfrom andto must have the same length.

68 Chapter 4. String Services

Warning: don't use strings derived frohowercase anduppercase as arguments; in some locales, these
don't have the same length. For case conversions, alwayswse() andupper()

split (s[, sep{, maxsplit]])
Return a list of the words of the strirgy If the optional second argumesépis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and nadtlone, it specifies a string to be used as the word separator. The returned list
will then have one more items than the number of non-overlapping occurrences of the separator in the string.
The optional third argumembaxsplitdefaults to 0. If it is nonzero, at mostaxsplithumber of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have ahengtlit-1

elements).

splitfields (s[, se[{, maxspliﬂ])
This function behaves identically gplit() . (In the pastsplit() was only used with one argument, while
splitfields() was only used with two arguments.)

join (Words[, sep])
Concatenate a list or tuple of words with intervening occurrencegpfThe default value fosepis a single
space character. It is always true thatting.join(string.split(s, sep, sep’equalss.

joinfields (Word{, sep])
This function behaves identical foin() . (In the pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.)

Istrip (9
Return a copy of but without leading whitespace characters.

rstrip (9
Return a copy o$ but without trailing whitespace characters.

strip (9
Return a copy of without leading or trailing whitespace.

swapcase (9)
Return a copy o§, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechari)
Delete all characters fromthat are indeletechargif present), and then translate the characters usihtg,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (9)
Return a copy o§, but with lower case letters converted to upper case.

ljust (s, width

rjust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leaswidth characters wide, created by padding the stemgth spaces until the given width on
the right, left or both sides. The string is never truncated.

zfill - (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, nev[, maxsplit])
Return a copy of stringtr with all occurrences of substringld replaced bynew If the optional argument
maxsplitis given, the firstmaxsplitoccurrences are replaced.

This module is implemented in Python. Much of its functionality has been reimplemented in the built-in module
strop . However, you shouldeverimport the latter module directly. Whestring discovers thastrop exists, it
transparently replaces parts of itself with the implementation fstnop . After initialization, there isno overhead

4.1. string — Common string operations 69

in usingstring instead ofstrop

4.2 re — Perl-style regular expression operations.

This module provides regular expression matching operations similar to those found in Perl. It's 8-bit clean: the strings
being processed may contain both null bytes and characters whose high bit is set. Regular expression pattern strings
may not contain null bytes, but can specify the null byte using thembernotation. Characters with the high bit set

may be included. Thee module is always available.

Regular expressions use the backslash charaétgrt@ indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have té\Write as the pattern

string, because the regular expression musi\bé, ‘and each backslash must be expressed\asihside a regular

Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with ™. So r"\n" is a two-character string containing’‘and ‘n’, while

"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressidmasidB are both regular expressions,
thenABis also an regular expression. If a stripghatches A and another striggnatches B, the stringg will match

AB. Thus, complex expressions can easily be constructed from simpler primitive expressions like the ones described
here. For details of the theory and implementation of regular expressions, consult the Friedl book referenced below,
or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fiiapy/www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characteés,‘ Bkedr

‘0, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
solast ; matches the strindast’ . (In the rest of this section, we'll write RE’s iithis special style I

usually without quotes, and strings to be matcliedsingle quotes’)

Some characters, lik¢ * or ‘ (’, are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

The special characters are:

‘. (Dot.) In the default mode, this matches any character except a newline. D@FALLflag has been
specified, this matches any character including a newline.

(Caret.) Matches the start of the string, andMULTILINE mode also matches immediately after each
newline.

‘$’ Matches the end of the string, and MiULTILINE mode also matches before a newliffeo ; matches
both 'foo’ and 'foobar’, while the regular expressioo$; matches only 'foo’.

‘*’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible.lab* ; will match 'a’, ab’, or 'a’ followed by any number of 'b’s.

70 Chapter 4. String Services

()

1?)

7,472,727

{m, n}

{m, n}?

(.)

..)

(?iLmsx)

Causes the resulting RE to match 1 or more repetitions of the precedingREwill match 'a’ followed
by any non-zero number of 'b’s; it will not match just 'a’.

Causes the resulting RE to match 0 or 1 repetitions of the precedindgBE.will match either 'a’ or
‘ab’.

The *’, *+’, and “?’ qualifiers are allgreedy they match as much text as possible. Sometimes this
behaviour isn’'t desired; if the RE.*> | is matched againstH1>title</H1>’ , it will match the
entire string, and not juskH1>' . Adding ‘?’ after the qualifier makes it perform the matchrion-
greedyor minimal fashion; affew characters as possible will be matched. Usiig ;in the previous
expression will match onRgH1>" .

Causes the resulting RE to match fremto n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For examfd€3,5} will match from 3 to 5 &’ characters. Omitting
specifies an infinite upper bound; you can’t omit

Causes the resulting RE to match framto n repetitions of the preceding RE, attempting to match as
fewrepetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character strinpaaaaa’ , 'a{3,5} ;will match 5 ‘a’ characters, whiléa{3,5}? ;will only match

3 characters.

Either escapes special characters (permitting you to match charactefs Jike', and so forth), or signals
a special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn't recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand,
so it's highly recommended that you use raw strings for all but the simplest expressions.

Used to indicate a set of characters. Characters can be listed individually, or a range of characters can
be indicated by giving two characters and separating them by.aSpecial characters are not active
inside sets. For exampléakm$] ; will match any of the charactera”, ‘k’, ‘m, or ‘$’; Ta-z] ; will

match any lowercase letter, afadzA-Z0-9] matches any letter or digit. Character classes subtl as

or\S (defined below) are also acceptable inside a range. If you want to inclydeoaa ‘-’ inside a

set, precede it with a backslash, or place it as the first character. The dgkterwill match’] , for
example.

You can match the characters not within a rangedayplementinghe set. This is indicated by including
a "’ as the first character of the sef;’‘elsewhere will simply match the ° character. For example,
T'5] ;will match any character excef"

A|B, where A and B can be arbitrary RES, creates a regular expression that will match either A or B.
This can be used inside groups (see below) as well. To match a literalse\| ;, or enclose it inside a
character class, as fif] .

Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the\ numberspecial sequence, described below. To match the litgfats“’) ’, use\(;or

\)), or enclose them inside a character cldgk:[)] .

This is an extension notation (2'*following a ‘(' is not meaningful otherwise). The first character after

the 2’ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group{?P< name-...) | is the only exception to this rule. Following are the currently
supported extensions.

(One or more letters from the sét’, ‘L', ‘m, ‘s’, ‘x’.) The group matches the empty string; the letters
set the corresponding flage(l ,re.L ,re.M ,re.S ,re.X) for the entire regular expression. This is
useful if you wish to include the flags as part of the regular expression, instead of pa8amgrgument

to thecompile() function.

4.2. re — Perl-style regular expression operations. 71

(?:...)

A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the greamotbe retrieved after performing a match or referenced
later in the pattern.

(?P<name-...) Similar to regular parentheses, but the substring matched by the group is accessible via the sym-

bolic group nhamename Group names must be valid Python identifiers. A symbolic group is also a
numbered group, just as if the group were not named. So the group named 'id’ in the example above can
also be referenced as the numbered group 1.

For example, if the pattern i§?P<id>[a-zA-Z _]\w*) |, the group can be referenced by its name
in arguments to methods of match objects, sucmagoup(’id’) or m.end(’id") , and also by
name in pattern text (e.§?P=id)) and replacement text (e.\g<id>).

(?P=namg Matches whatever text was matched by the earlier group naiared

(?#...)
(?=..)
(2L...)

A comment; the contents of the parentheses are simply ignored.

Matchesifl... ;matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For examplellsaac (?=Asimov) will match’lsaac ' only ifit's followed by 'Asimov’
Matches if... | doesn't match next. This is a negative lookahead assertion. For exatsphs

(?'Asimov) ;will match’lsaac only if it's notfollowed by’Asimov’

The special sequences consist\ofand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exarkplenatches the charactep’

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For

\b

\B
\d
\D
\s
\S

\w

\W

\Z
\

example/(.+) \1 ;matchesthe the’ or’55 55 | butnot'the end” (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit
of numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as the
character with octal valueumber Inside the [' and ‘] ' of a character class, all numeric escapes are
treated as characters.

Matches only at the start of the string.

Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.
Inside a character rang#h | represents the backspace character, for compatibility with Python’s string
literals.

Matches the empty string, but only when itist at the beginning or end of a word.
Matches any decimal digit; this is equivalent to the e8] .

Matches any non-digit character; this is equivalent to thg€e8] .

Matches any whitespace character; this is equivalent to the S&t\r\fiv] 5
Matches any non-whitespace character; this is equivalent to ti{g $8n\r\fiv] 5

When theLOCALEflag is not specified, matches any alphanumeric character; this is equivalent to the set
Ta-zA-Z0-9 _] . With LOCALE it will match the set[0-9 _], plus whatever characters are defined
as letters for the current locale.

When theLOCALEflag is not specified, matches any non-alphanumeric character; this is equivalent to
the set["a-zA-Z0-9 _],. With LOCALE it will match any character not in the sf@-9 _], and not
defined as a letter for the current locale.

Matches only at the end of the string.

Matches a literal backslash.

72

Chapter 4. String Services

Matching vs. Searching

XXX This section is still incomplete!

Python offers two different primitive operations based on regular expressions: match and search. If you are accustomed
to Perl’s semantics, the search operation is what you're looking for. Sex=#lneh() function and corresponding
method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning WwitH ° matches only at the start

of the string, or iNMULTILINE mode also immediately following a newline. "match” succeeds only if the pattern
matches at the start of the string regardless of mode, or at the starting position given by the ppsamglment
regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds
re.compile(""a").search("ba", 1) # fails; 'a’ not at start
re.compile(""a").search("\na", 1) # fails; 'a’ not at start

re.compile("a", re.M).search("\na", 1) # succeeds
re.compile(""a", re.M).search("ba", 1) # fails; no preceding \n

Module Contents

The module defines the following functions and constants, and an exception:

compile (patterr{, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifiggs value. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version usingompile() is more efficient when the expression will be used several times in a single
program.

I

IGNORECASE
Perform case-insensitive matching; expressions Tikez] ; will match lowercase letters, too. This is not
affected by the current locale.

L
LOCALE
Make \w , \W, \b , \B }, dependent on the current locale.

M

MULTILINE
When specified, the pattern character matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern chara@ematches at the end of the string and at

4.2. re — Perl-style regular expression operations. 73

the end of each line (immediately preceding each newline). By defatihatches only at the beginning of the
string, and $’ only at the end of the string and immediately before the newline (if any) at the end of the string.

S

DOTALL
Make the ! ’ special character match any character at all, including a newline; without this.flagilt match
anythingexcepta newline.

X

VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line egBmaitiea *

in a character class or preceded by an unescaped backslash, all characters from the leftm#5stisocigh

the end of the line are ignored.

search (pattern, string{, flags])
Scan througlstring looking for a location where the regular expresgiatternproduces a match, and return a
correspondinglatchObject instance. Returione if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

match (pattern, string{, flags])
If zero or more characters at the beginningwing match the regular expressipattern return a corresponding
MatchObject instance. Returione if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywheredtring, usesearch() instead.

split (pattern, string,[, maxsplit = 0])
Split string by the occurrences @iattern If capturing parentheses are usegattern then the text of all groups
in the pattern are also returned as part of the resulting lishabtsplitis nonzero, at moshaxsplitsplits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 releasepaxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(\W+', 'Words, words, words.")
[Words’, 'words’, 'words’, "]

>>> re.split((\W+)', 'Words, words, words.")
[Words’, *, ', 'words’, ’, ’, 'words’, ", "]
>>> re.split(\W+', 'Words, words, words.’, 1)
[Words’, 'words, words.’]

This function combines and extends the functionality of theefgub.split() andregsub.splitx()

findall (pattern, string
Return a list of all non-overlapping matchespatternin string. If one or more groups are present in the pattern,
return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are
included in the result. New in version 1.5.2.

sub (pattern, repl, strin&, count = 0])
Return the string obtained by replacing the leftmost non-overlapping occurrenpastefin string by the
replacementepl. If the pattern isn’t foundstringis returned unchangedepl can be a string or a function; if a
function, it is called for every non-overlapping occurrencgattern The function takes a single match object
argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
if matchobj.group(0) == ’-": return
else: return -’
>>> re.sub(’-{1,2}, dashrepl, ’'pro----gram-files’)
‘pro--gram files’

[}

74 Chapter 4. String Services

The pattern may be a string or a regex object; if you need to specify regular expression flags, you must use
a regex object, or use embedded modifiers in a pattern; suh(*“(?i)b+", "x", "bbbb BBBB") '
returns'’x x’

The optional argumerttountis the maximum number of pattern occurrences to be replasaditmust be a
non-negative integer, and the default value of 0 means to replace all occurrences.

Empty matches for the pattern are replaced only when not adjacent to a previous maab(’s#’; -,

‘abc’) 'returns’-a-b-c-’

If replis a string, any backslash escapes in it are processed. That'igs tonverted to a single newline charac-
ter, \r ’is converted to a linefeed, and so forth. Unknown escapes suah aare left alone. Backreferences,
such as\6 ’, are replaced with the substring matched by group 6 in the pattern.

In addition to character escapes and backreferences as described &dpavame>’ will use the substring
matched by the group namedame’, as defined by th?P<name>...) | syntax. \g<number> ’ uses the
corresponding group numbeig<2> ’ is therefore equivalent td2 ’, but isn’t ambiguous in a replacement
such as\g<2>0 . ‘\20 " would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal charactel0".

subn (pattern, repl, strin&, count = 0])
Perform the same operationsgh() , but return a tuplé new_string, number of_subs madg .

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

error
Exception raised when a string passed to one of the functions here is not a valid regular expression (e.g., un-
matched parentheses) or when some other error occurs during compilation or matching. It is never an error if a
string contains no match for a pattern.

Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

search (string[, pos][, endpoé)
Scan througtstring looking for a location where this regular expression produces a match, and return a corre-
spondingMatchObject instance. ReturiNone if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

The optionabosandendpogarameters have the same meaning as fonmtaeh() method.

match (string[, pos][, endpoﬁ)
If zero or more characters at the beginningstring match this regular expression, return a corresponding
MatchObject instance. Returione if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywheredtring, usesearch() instead.

The optional second paramefmsgives an index in the string where the search is to start; it defaults This
is not completely equivalent to slicing the string; thie pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parametandpodimits how far the string will be searched; it will be as if the stringeisdpos
characters long, so only the characters fromsto endposwill be searched for a match.

split (string,[, maxsplit = O])
Identical to thesplit() function, using the compiled pattern.

findall (' string)
Identical to theindall() function, using the compiled pattern.

4.2. re — Perl-style regular expression operations. 75

sub (repl, string{, count = 0])
Identical to thesub() function, using the compiled pattern.

subn (repl, string{, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the regex object was compil@df oo flags were provided.

groupindex
A dictionary mapping any symbolic group names defined(®l< id>) ; to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the regex object was compiled.

Match Objects

MatchObject instances support the following methods and attributes:

group ([groupl, group2, ..])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if there
are multiple arguments, the result is a tuple with one item per argument. Without argugrentsl defaults
to zero (i.e. the whole match is returned). IfyeoupN argument is zero, the corresponding return value is
the entire matching string; if it is in the inclusive range [1..99], it is the string matching the the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
anlIndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result ione. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

If the regular expression uses tffeP< name-...) ;syntax, thegroupNarguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group hame in the pattetexB&rror
exception is raised.

A moderately complicated example:

m = re.match(r'(?P<int>\d+)\.(\d*)", '3.14’)

After performing this matchn.group(1) is'3’ , asism.group(’int’) ,andm.group(2) is’'14’

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The defaultargument is used for groups that did not participate in the match; it defauMsrte. (Incompat-
ibility note: in the original Python 1.5 release, if the tuple was one element long, a string would be returned
instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

groupdict ([default])
Return a dictionary containing all theamedsubgroups of the match, keyed by the subgroup namedéfailt
argument is used for groups that did not participate in the match; it defaultsrte.

start ([group])

end (| group])
Return the indices of the start and end of the substring matchegtolyy, group defaults to zero (meaning the
whole matched substring). Retudone if groupexists but did not contribute to the match. For a match olopect
and a groum that did contribute to the match, the substring matched by ggdeguivalent tam.group(g))
is

m.string[m.start(g):m.end(g)]

76 Chapter 4. String Services

Note thatm.start(group) will equalm.end(group) if groupmatched a null string. For example, aftar=
re.search(’b(c?)’, 'cba’) , m.start(0) is 1, m.end(0) is 2, m.start(1) andm.end(1)
are both 2, andh.start(2) raises arindexError exception.

span ([group])
ForMatchObject m, return the 2-tuplé m.start(group, m.end(group)) . Note that ifgroupdid not
contribute to the match, this {dlone, None) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to tleearch() ormatch() function. This is the index into the string at
which the regex engine started looking for a match.

endpos
The value ofendposwhich was passed to tteearch() or match() function. This is the index into the
string beyond which the regex engine will not go.

re
The regular expression object whamatch() orsearch() method produced thiglatchObject instance.

string
The string passed tmatch() or search()

See Also:

Jeffrey Friedl,Mastering Regular Expression®’Reilly. The Python material in this book dates from beforerthe
module, but it covers writing good regular expression patterns in great detail.

4.3 regex — Regular expression search and match operations.

This module provides regular expression matching operations similar to those found in Emacs.

Obsolescence note: This module is obsolete as of Python version 1.5; it is still being maintained because
much existing code still uses it. All new code in need of regular expressions should use the newd-

ule, which supports the more powerful and regular Perl-style regular expressions. Existing code should be con-
verted. The standard library moduteconvert helps in convertingegex style regular expressions t@

style regular expressions. (For more conversion help, see Andrew Kuchliregex-to-re HOWTOQO” at
http://www.python.org/doc/howto/regex-to-re/.)

By default the patterns are Emacs-style regular expressions (with one exception). There is a way to change the syntax
to match that of several well-knownNux utilities. The exception is that Emacas*’ pattern is not supported, since
the original implementation references the Emacs syntax tables.

This module is 8-bit clean: both patterns and strings may contain null bytes and characters whose high bit is set.

Please note: There is a little-known fact about Python string literals which means that you don't usually have to
worry about doubling backslashes, even though they are used to escape special characters in string literals as well as
in regular expressions. This is because Python doesn’t remove backslashes from string literals if they are followed
by an unrecognized escape charactdowever if you want to include a literabackslashin a regular expression
represented as a string literal, you havegt@mdrupleit or enclose it in a singleton character class. E.g. to extract

IATEX *\section{ ...}’ headers from a document, you can use this patt@isection{\(.*\)}’ . Another
exceptionithe escape sequedb “ is significant in string literals (where it means the ASCII bell character) as well as

in Emacs regular expressions (where it stands for a word boundary), so in order to search for a word boundary, you
should use the patte\b’ . Similarly, a backslash followed by a digit 0-7 should be doubled to avoid interpretation

as an octal escape.

4.3. regex — Regular expression search and match operations. 77

Regular Expressions

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expresshaanrsl8 are both regular expressions, then

ABis also an regular expression. If a stripgnatches A and another strimgnatches B, the stringg will match AB.

Thus, complex expressions can easily be constructed from simpler ones like the primitives described here. For details
of the theory and implementation of regular expressions, consult almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows.

Regular expressions can contain both special and ordinary characters. Ordinary charactéy's, ikeor '0’, are
the simplest regular expressions; they simply match themselves. You can concatenate ordinary chardastrs, so’
matches the characters 'last’. (In the rest of this section, we’ll write RElsi#n special font , usually without
guotes, and strings to be matched ’in single quotes’.)

Special characters either stand for classes of ordinary characters, or affect how the regular expressions around them
are interpreted.

The special characters are:

(Dot.) Matches any character except a newline.
(Caret.) Matches the start of the string.

$ Matches the end of the stringoo matches both 'foo’ and 'foobar’, while the regular expressitmo$ ’
matches only 'foo’.

* Causes the resulting RE to match 0 or more repetitions of the precedingbREwill match 'a’, 'ab’, or 'a’
followed by any number of 'b’s.

+ Causes the resulting RE to match 1 or more repetitions of the precedingbREwill match 'a’ followed by
any non-zero number of 'b’s; it will not match just 'a’.

? Causes the resulting RE to match 0 or 1 repetitions of the precedingtREwill match either 'a’ or 'ab’.

\ Either escapes special characters (permitting you to match characters like *?+&$’), or signals a special se-
quence; special sequences are discussed below. Remember that Python also uses the backslash as an escape
sequence in string literals; if the escape sequence isn’t recognized by Python'’s parser, the backslash and subse-
guent character are included in the resulting string. However, if Python would recognize the resulting sequence,
the backslash should be repeated twice.

[Used to indicate a set of characters. Characters can be listed individually, or a range is indicated by giving two
characters and separating them by a ’-’. Special characters are not active inside sets. For gaamntkjle will
match any of the characters 'a’, 'k’, 'm’, or '$[a-z] will match any lowercase letter.

If you want to include g inside a set, it must be the first character of the set; to includepéace it as the first
or last character.

Charactersiot within a range can be matched by including as the first character of the sétplsewhere will
simply match the™’ character.

The special sequences consist\ofand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exandplejatches the character '$’. Ones where the
backslash should be doubled in string literals are indicated.

\| A\IB , where A and B can be arbitrary RES, creates a regular expression that will match either A or B. This can
be used inside groups (see below) as well.

78 Chapter 4. String Services

\() Indicates the start and end of a group; the contents of a group can be matched later in the string i8] the
special sequence, described next.

\1, ... \7,\8, \9
Matches the contents of the group of the same number. For exaifiplg, \\1 matches 'the the’ or '55
55, but not 'the end’ (note the space after the group). This special sequence can only be used to match one of
the first 9 groups; groups with higher numbers can be matched usiig tbequence\§ and\9 don't need a
double backslash because they are not octal digits.)

\\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.

\B Matches the empty string, but when itristat the beginning or end of a word.

\v Must be followed by a two digit decimal number, and matches the contents of the group of the same number.
The group number must be between 1 and 99, inclusive.

\w Matches any alphanumeric character; this is equivalent to tHa-g#t-Z0-9]
\W Matches any non-alphanumeric character; this is equivalent to tli@se-Z0-9]

\< Matches the empty string, but only at the beginning of a word. A word is defined as a sequence of alphanumeric
characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.

\> Matches the empty string, but only at the end of a word.
\W\ Matches a literal backslash.
\' Like ", this only matches at the start of the string.

\\' Like $, this only matches at the end of the string.

Module Contents

The module defines these functions, and an exception:

match (pattern, string
Return how many characters at the beginningtahg match the regular expressigattern Return-1 if the
string does not match the pattern (this is different from a zero-length match!).

search (pattern, string
Return the first position istring that matches the regular expresspaitern Return-1 if no position in the
string matches the pattern (this is different from a zero-length match anywhere!).

compile (patterr{, translate])
Compile a regular expression pattern into a regular expression object, which can be used for matching using
its match() andsearch() methods, described below. The optional argumeantslate if present, must
be a 256-character string indicating how characters (both of the pattern and of the strings to be matched) are
translated before comparing them; tkith element of the string gives the translation for the characteragthi
codei. This can be used to implement case-insensitive matching; seaskéld data item below.

The sequence

prog = regex.compile(pat)
result = prog.match(str)

is equivalent to

result = regex.match(pat, str)

4.3. regex — Regular expression search and match operations. 79

but the version usingompile() is more efficient when multiple regular expressions are used concurrently in a
single program. (The compiled version of the last pattern passedéx.match() or regex.search()

is cached, so programs that use only a single regular expression at a time needn’t worry about compiling regular
expressions.)

set _syntax (flag9
Set the syntax to be used by future callsctampile() , match() andsearch() . (Already compiled
expression objects are not affected.) The argument is an integer which is the OR of several flag bits. The
return value is the previous value of the syntax flags. Names for the flags are defined in the standard module
regex _syntax ;read the fileregex_syntax.py’ for more information.

get _syntax ()
Returns the current value of the syntax flags as an integer.

symcomp(patterr{, translate])
This is like compile() , but supports symbolic group names: if a parenthesis-enclosed group begins with
a group name in angular brackets, e{<id>[a-z][a-z0-9]*\)’ , the group can be referenced by
its name in arguments to tlggoup() method of the resulting compiled regular expression object, like this:
p.group(id’) . Group names may contain alphanumeric characters ahdnly.

error
Exception raised when a string passed to one of the functions here is not a valid regular expression (e.g., un-
matched parentheses) or when some other error occurs during compilation or matching. (It is never an error if a
string contains no match for a pattern.)

casefold
A string suitable to pass as tlenslateargument tocompile() to map all upper case characters to their
lowercase equivalents.

Compiled regular expression objects support these methods:

match (string[, pos])
Return how many characters at the beginningtdhg match the compiled regular expression. Retdrnif the
string does not match the pattern (this is different from a zero-length match!).

The optional second parametpos gives an index in the string where the search is to start; it defaultsThis
is not completely equivalent to slicing the string; thie pattern character matches at the real beginning of the
string and at positions just after a newline, not necessarily at the index where the search is to start.

search (string[, pos])
Return the first position istring that matches the regular expresspaitern . Return-1 if no position in the
string matches the pattern (this is different from a zero-length match anywhere!).

The optional second parameter has the same meaning as foatbke() method.

group (index, index, .).
This method is only valid when the last call to theatch() orsearch() method found a match. It returns
one or more groups of the match. If there is a siriglexargument, the result is a single string; if there are
multiple arguments, the result is a tuple with one item per argument. lhttexis zero, the corresponding
return value is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the the
corresponding parenthesized group (using the default syntax, groups are parenthesizZ¢d asilgy). If no
such group exists, the corresponding resuNdase.

If the regular expression was compiledfymcomp() instead ofcompile() , theindexarguments may also
be strings identifying groups by their group name.

Compiled regular expressions support these data attributes:

regs
When the last call to thenatch() or search() method found a match, this is a tuple of pairs of indexes
corresponding to the beginning and end of all parenthesized groups in the pattern. Indices are relative to the
string argument passed moatch() or search() . The 0-th tuple gives the beginning and end or the whole

80 Chapter 4. String Services

pattern. When the last match or search failed, thidage.

last
When the last call to thmatch() orsearch() method found a match, this is the string argument passed to
that method. When the last match or search failed, thitise.

translate
This is the value of thé&ranslateargument taegex.compile() that created this regular expression object.
If the translateargument was omitted in thregex.compile() call, this isNone.

givenpat
The regular expression pattern as passamtopile() or symcomp() .

realpat
The regular expression after stripping the group names for regular expressions compilsgmétimp() .
Same agjivenpat otherwise.

groupindex

A dictionary giving the mapping from symbolic group names to numerical group indexes for regular expressions
compiled withsymcomp() . None otherwise.

4.4 regsub — String operations using regular expressions

This module defines a number of functions useful for working with regular expressions (see built-in neagule).
Warning: these functions are not thread-safe.

Obsolescence noteThis module is obsolete as of Python version 1.5; it is still being maintained because much
existing code still uses it. All new code in need of regular expressions should use the meadule, which supports

the more powerful and regular Perl-style regular expressions. Existing code should be converted. The standard library
modulereconvert helps in convertingegex style regular expressionsite style regular expressions. (For more
conversion help, see Andrew Kuchling's “regex-to-re HOWTO@t://www.python.org/doc/howto/regex-to-re/.)

sub (pat, repl, st)
Replace the first occurrence of patteatin stringstr by replacemenepl. If the patternisn’t found, the string is
returned unchanged. The pattern may be a string or an already compiled pattern. The replacement may contain
references\'digit’ to subpatterns and escaped backslashes.

gsub (pat, repl, st)
Replace all (non-overlapping) occurrences of patgatin stringstr by replacementepl. The same rules as for
sub() apply. Empty matches for the pattern are replaced only when not adjacent to a previous match, so e.g.
gsub(”, '-’, 'abc’) returns’-a-b-c-’

split ~ (str, pal[, maxsplit])
Splitthe stringstr in fields separated by delimiters matching the patpathand return a list containing the fields.
Only non-empty matches for the pattern are considered, sosplit(a:b’, ":*) returns['a’,
‘'] andsplit(abc’,) returnsabc’] . Themaxsplitdefaults to O. If it is nonzero, onlgaxsplit
number of splits occur, and the remainder of the string is returned as the final element of the list.

splitx (str, pal[, maxsplit])
Split the stringstr in fields separated by delimiters matching the patfat and return a list containing the
fields as well as the separators. For examgéitx(a:::b’, ":*) returns['a’, i, 'b’]
Otherwise, this function behaves the sams@i

capwords (s[, pat])
Capitalize words separated by optional patteab The default pattern uses any characters except letters, digits
and underscores as word delimiters. Capitalization is done by changing the first character of each word to upper
case.

4.4. regsub — String operations using regular expressions 81

clear _cache ()
The regsub module maintains a cache of compiled regular expressions, keyed on the regular expression string
and the syntax of the regex module at the time the expression was compiled. This function clears that cache.

4.5 struct — Interpret strings as packed binary data.

This module performs conversions between Python values and C structs represented as Python strinfmniatises
strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values.

The module defines the following exception and functions:

error
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2,..)
Return a string containing the valuey v2, ... packed according to the given format. The arguments must
match the values required by the format exactly.

unpack (fmt, string
Unpack the string (presumably packed pgck(fmt, ...)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (i.e.len(string) must equatalcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

Format | C Type Python
‘X’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B unsigned char integer
‘h’ short integer
‘H unsigned short integer
i’ int integer
1’ unsigned int integer
1 long integer
‘L unsigned long integer
‘“fr float float
‘o’ double float
‘s’ char(] string
‘P’ charf] string
‘P void * integer

A format character may be preceded by an integral repeat count; e.g. the formaistringneans exactly the same
as’hhhh’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the s’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; e.d10s’ means a single 10-byte string, whilEDc’ means 10 characters. For packing, the
string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special &&se, means a single, empty string (whild&c’ means

0 characters).

82 Chapter 4. String Services

The ‘p’ format character can be used to encode a Pascal string. The first byte is the length of the stored string, with the
bytes of the string following. If count is given, it is used as the total number of bytes used, including the length byte.
If the string passed in tpack() is too long, the stored representation is truncated. If the string is too short, padding

is used to ensure that exactly enough bytes are used to satisfy the count.

For the 1 " and ‘L’ format characters, the return value is a Python long integer.

For the P’ format character, the return value is a Python integer or long integer, depending on the size needed to hold
a pointer when it has been cast to an integer typdWA_L pointer will always be returned as the Python integ@er

When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha and
Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size and alignment
‘@ native native
‘= native standard
‘<’ little-endian standard
>’ big-endian standard
‘1 network (= big-endian) standard

If the first character is not one of thes@is assumed.

Native byte order is big-endian or little-endian, depending on the host system (e.g. Motorola and Sun are big-endian;
Intel and DEC are little-endian).

Native size and alignment are determined using the C compiizenf expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is 2 bytes;int andlong are 4 bytes.float anddouble are 32-bit and 64-bit IEEE floating point
numbers, respectively.

Note the difference betwee@ and ‘=": both use native byte order, but the size and alignment of the latter is stan-
dardized.

The form 1’ is available for those poor souls who claim they can’t remember whether network byte order is big-endian
or little-endian.

There is no way to indicate non-native byte order (i.e. force byte-swapping); use the appropriate chdioe ‘o'

The ‘P’ format character is only available for the native byte ordering (selected as the default or withhlyte' order
character). The byte order character thooses to use little- or big-endian ordering based on the host system. The
struct module does not interpret this as native ordering, sd®XHermat is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(’hhl’, 1, 2, 3)
"\000\001\000\002\000\000\000\003’

>>> unpack(hhl’, \000\001\000\002\000\000\000\003")

1, 2, 3)
>>> calcsize(’hhl’)
8

4.5. struct — Interpret strings as packed binary data. 83

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero, e.g. the foritiadl’ specifies two pad bytes at the end, assuming longs

are aligned on 4-byte boundaries. This only works when native size and alignment are in effect; standard size and
alignment does not enforce any alignment.

See Also:
5.6 Modulearray (packed binary storage of homogeneous data)
12.12: Modulexdrlib (packing and unpacking of XDR data)

4.6 StringlO — Read and write strings as files

This module implements a file-like clasStringlO , that reads and writes a string buffer (also knownresnmory
fileg). See the description on file objects for operations (section 2.1).

StringlO ([buﬁer])
When aStringlO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, th&tringlO will start empty.

The following methods o6tringlO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time beforeStiinglO object'sclose() method is called.

close ()
Free the memory buffer.

4.7 cStringlO — Faster version of StringlO

The modulecStringlO provides an interface similar to that of ti&ringlO module. Heavy use o®trin-
glO.StringlO objects can be made more efficient by using the funcisinglO() from this module instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. Use the origiainglO module in that case.

The following data objects are provided as well:

InputType
The type object of the objects created by callBtgnglO with a string parameter.

OutputType
The type object of the objects returned by callBtginglO with no parameters.

There is a C API to the module as well; refer to the module source for more information.

84 Chapter 4. String Services

CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions. Here’s
an overview:

math Mathematical functionss{n() etc.).

cmath Mathematical functions for complex numbers.

whrandom Floating point pseudo-random number generator.

random Generate pseudo-random numbers with various common distributions.
bisect Array bisection algorithms for binary searching.

array Efficient arrays of uniformly typed numeric values.

ConfigParser Configuration file parser.

fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
calendar Functions that emulate theNux cal program.

cmd Build line-oriented command interpreters; this is used by mogdke.
shlex Simple lexical analysis for Nix shell-like languages.

5.1 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard. They are:

acos (X)
Return the arc cosine of

asin (x)
Return the arc sine of

atan (x)
Return the arc tangent &f

atan2 (y, X%
Returnatan(y / X).

ceil (X)
Return the ceiling ok as a real.

cos (X
Return the cosine of.

cosh (X)
Return the hyperbolic cosine &f

exp (X)
Returne** x.

fabs (x)

85

Return the absolute value of the real

floor (x)
Return the floor ok as a real.
fmod (x, y)
Returnx % y.
frexp (X)
Return the matissa and exponentXoiThe mantissa is positive.
hypot (X, Y)
Return the Euclidean distanagrt(x*x + y*y).
Idexp (X, i)
Returnx * (2** i) .
log (X)
Return the natural logarithm of
log1l0 (X)
Return the base-10 logarithm xf
modf (X)
Return the fractional and integer partsxoBoth results carry the sign af The integer part is returned as a real.
pow(X, y)
Returnx** y.
sin (X)
Return the sine of.
sinh (x)
Return the hyperbolic sine af
sqrt (X)
Return the square root a&f
tan (X)
Return the tangent of
tanh (x)

Return the hyperbolic tangent »f

Note thatfrexp() andmodf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

The module also defines two mathematical constants:

pi

The mathematical constapit
e

The mathematical constaat
See Also:

5.2: Modulecmath (Complex number versions of many of these functions.)

5.2 cmath — Mathematical functions for complex numbers

86 Chapter 5. Miscellaneous Services

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

acos (x)

Return the arc cosine aof
acosh (x)

Return the hyperbolic arc cosine xf
asin (x)

Return the arc sine of
asinh (x)

Return the hyperbolic arc sine »f
atan (x)

Return the arc tangent &f
atanh (x)

Return the hyperbolic arc tangentof
cos (X)

Return the cosine of.
cosh (X)

Return the hyperbolic cosine &f
exp (x)

Return the exponential valug™* x.
log (X)

Return the natural logarithm of
l0g10 (X)

Return the base-10 logarithm xf
sin (X)

Return the sine af.
sinh (X)

Return the hyperbolic sine af
sqrt (X)

Return the square root af
tan ()

Return the tangent of
tanh (x)

Return the hyperbolic tangent »f

The module also defines two mathematical constants:

pi
The mathematical constapt, as a real.

The mathematical constaatas a real.

Note that the selection of functions is similar, but not identical, to that in maodialén . The reason for having two
modules is, that some users aren't interested in complex numbers, and perhaps don’t even know what they are. They
would rather havenath.sqrt(-1) raise an exception than return a complex number. Also note that the functions
defined incmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

5.2. cmath — Mathematical functions for complex numbers 87

5.3 whrandom — Floating point pseudo-random number generator.

This module implements a Wichmann-Hill pseudo-random number generator class that is alsontaarstbm .
Instances of thevhrandom class have the following methods:

choice (seq
Chooses a random element from the non-empty sequesgzd returns it.

randint (a, b
Returns a random integsf such thab<=N<=b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed (X, Y, 2
Initializes the random number generator from the integessandz. When the module is first imported, the
random number is initialized using values derived from the current time.

uniform (a, b
Returns a random real numkersuch that<=N<b.

When imported, thevhrandom module also creates an instance of Wlgandom class, and makes the methods of
that instance available at the module level. Therefore one can write Bitherwhrandom.random() or:

generator = whrandom.whrandom()
N = generator.random()

See Also:
5.4: Modulerandom (generators for various random distributions)

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistic81 (1982) 188-190

5.4 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions: on the real line, there are func-
tions to compute normal or Gaussian, lognormal, negative exponential, gamma, and beta distributions. For generating
distribution of angles, the circular uniform and von Mises distributions are available.

The module exports the following functions, which are exactly equivalent to those imwfthendom module:
choice() ,randint() ,random() anduniform() . See the documentation for thehrandom module for
these functions.

The following functions specific to theandom module are also defined, and all return real values. Function pa-
rameters are named after the corresponding variables in the distribution’s equation, as used in common mathematical
practice; most of these equations can be found in any statistics text.

betavariate (alpha, beta
Beta distribution. Conditions on the parametersapha >- 1 andbeta > -1 . Returned values will range
between 0 and 1.

cunifvariate (mean, arg
Circular uniform distributionmeanis the mean angle, araic is the range of the distribution, centered around
the mean angle. Both values must be expressed in radians, and can range betwepn ®Ranhdned values
will range betweemean - arc/2 andmean + arc/2 .

88 Chapter 5. Miscellaneous Services

expovariate (lambg
Exponential distributionlambdis 1.0 divided by the desired mean. (The parameter would be called “lambda”,
but that is a reserved word in Python.) Returned values will range from 0 to positive infinity.

gammd alpha, beta
Gamma distribution.Notthe gamma function!) Conditions on the parametersafpka > -1 andbeta > 0.

gauss (mu, sigma
Gaussian distributionmu is the mean, andigmais the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate ~ (mu, sigma
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with meanmuand standard deviatissigma mucan have any value, arsigmamust be greater than zero.

normalvariate (mu, sigma
Normal distribution.muis the mean, andigmais the standard deviation.

vonmisesvariate (mu, kappa
muis the mean angle, expressed in radians between 0 gnida2tdkappais the concentration parameter, which
must be greater than or equal to zerokadppais equal to zero, this distribution reduces to a uniform random
angle over the range 0 to @i

paretovariate (alphg)
Pareto distributionalphais the shape parameter.

weibullvariate (alpha, beta
Weibull distribution.alphais the scale parameter abdtais the shape parameter.

See Also:

5.3: Modulewhrandom (the standard Python random number generator)

5.5 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is callbisect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (i.e., the boundary conditions are already right!).

The following functions are provided:

bisect (list, iten, lo[, hi]])
Locate the proper insertion point fdemin list to maintain sorted order. The parametkr&ndhi may be
used to specify a subset of the list which should be considered. The return value is suitable for use as the first
parameter tdist.insert()

insort (list, itenq, lo[, hi]])
Insertitemin list in sorted order. This is equivalent tist.insert(bisect.bisect(list, item lo,
hi), item).

Example

Thebisect() function is generally useful for categorizing numeric data. This examplehisest() to look up
a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A, 75..84 is a
‘B’, etc.

5.5. bisect — Array bisection algorithm 89

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
return grades[bisect(breakpoints, total)]

>>> grade(66)

cr

>>> map(grade, [33, 99, 77, 44, 12, 88])
[1E7’ 1A1, 1Bl’ IDI’ 7F1, 1A1]

5.6 array — Efficient arrays of numeric values

This module defines a new object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by usipg eode which is a single
character. The following type codes are defined:

Type code | C Type Minimum size in bytes
'c’ character 1
b’ signed int 1
B’ unsigned int 1
'n signed int 2
'H unsigned int 2
T signed int 2
T unsigned int 2
T signed int 4
L unsigned int 4
' float 4
o’ double 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed througitdhesize attribute. The values stored far and’l’ items

will be represented as Python long integers when retrieved, because Python’s plain integer type cannot represent the
full range of C’s unsigned (long) integers.

The module defines the following function and type object:

array (typecodE, initializer])
Return a new array whose items are restrictedyipecode and initialized from the optionahitializer value,
which must be a list or a string. The list or string is passed to the new afraxitist() or fromstring()
method (see below) to add initial items to the array.

ArrayType
Type object corresponding to the objects returneadgy()

Array objects support the following data items and methods:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

90 Chapter 5. Miscellaneous Services

append (X)
Append a new item with valueto the end of the array.

buffer _info ()
Return a tupl€ address length giving the current memory address and the length in bytes of the buffer used
to hold array’s contents. This is occasionally useful when working with low-level (and inherently unsafe) 1/0
interfaces that require memory addresses, such as cextdif operations. The returned numbers are valid
as long as the array exists and no length-changing operations are applied to it.

byteswap (X)
“Byteswap” all items of the array. This is only supported for integer values. It is useful when reading data from
a file written on a machine with a different byte order.

fromfile (f, n)
Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availableEOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else wittead() method won't do.

fromlist (list)
Append items from the list. This is equivalent for x in list: a.append(x) ' exceptthat if thereis a
type error, the array is unchanged.

fromstring (9
Appends items from the string, interpreting the string as an array of machine values (i.e. as if it had been read

from a file using thdromfile() method).
insert (i, x)
Insert a new item with valurin the array before position
read (f, n)
Deprecated since release 1.5.Use thefromfile() method.

Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availableEOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else wititad() method won't do.

reverse ()
Reverse the order of the items in the array.

tofile ()
Write all items (as machine values) to the file object

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()
Convert the array to an array of machine values and return the string representation (the same sequence of bytes
that would be written to a file by thifile() method.)

write ()
Deprecated since release 1.5.Use thetofile() method.

Write all items (as machine values) to the file object

When an array object is printed or converted to a string, it is representadag typecode initializer). The

initializer is omitted if the array is empty, otherwise it is a string if typecodeis 'c’ , otherwise it is a list of
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using
reverse quotes’(). Examples:

5.6. array — Efficient arrays of numeric values 91

array('l')

array(’c’, ’hello world’)
array(l', [1, 2, 3, 4, 5))
array('d’, [1.0, 2.0, 3.14])

See Also:

4.5: Modulestruct (packing and unpacking of heterogeneous binary data)
12.12: Modulexdrlib (packing and unpacking of XDR data)

5.7 ConfigParser = — Configuration file parser

This module defines the cla&€onfigParser . TheConfigParser class implements a basic configuration file
parser language which provides a structure similar to what you would find on Microsoft Windows INI files. You can
use this to write Python programs which can be customized by end users easily.

The configuration file consists of sections, lead bysaction] ' header and followed byfame: value ’en-

tries, with continuations in the style of RFC 822. The optional values can contain format strings which refer to
other values in the same section, or values in a spBd&&AULTsection. Additional defaults can be provided upon
initialization and retrieval. Lines beginning wité"are ignored and may be used to provide comments.

For example:

foodir: %(dir)s/whatever

would resolve the%(dir)s ' to the value of dir. All reference expansions are done late, on demand.

Intrinsic defaults can be specified by passing them intdtbefigParser constructor as a dictionary. Additional
defaults may be passed into thet method which will override all others.

ConfigParser ([defaultﬂ)
Return a new instance of tli&onfigParser class. Whemlefaultsis given, it is initialized into the dictionairy
of intrinsic defaults. They keys must be strings, and the values must be appropriate fé6(jke string
interpolation. Note that _name__is always an intrinsic default; it's value is the section name.

NoSectionError
Exception raised when a specified section is not found.

DuplicateSectionError
Exception raised when mutliple sections with the same name are found.

NoOptionError
Exception raised when a specified option is not found in the specified section.

InterpolationError
Exception raised when problems occur performing string interpolation.

MissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

ParsingError
Exception raised when errors occur attempting to parse a file.

92 Chapter 5. Miscellaneous Services

ConfigParser Objects

ConfigParser instances have the following methods:

defaults ()
Return a dictionairy containing the instance-wide defaults.

sections ()
Return a list of the sections available.

has _section (sectior)
Indicates whether the named section is present in the configuratiodHRAUL Tsection is not acknowledged.

options (section
Returns a list of options available in the specifssttion

read (filenamey
Read and parse a list of filenames.

get (section, optioﬁ, raw[, vars]])
Get anoptionvalue for the providedection All the ‘% interpolations are expanded in the return values, based
on the defaults passed into the constructor, as well as the optiesgrovided, unless theaw argument is true.

getint (section, optioh
A convenience method which coerces tpgionin the specifiedectionto an integer.

getfloat (' section, optioh
A convenience method which coerces tpionin the specifiegectionto a floating point number.

getboolean (section, optioh
A convenience method which coerces tiionin the specifiedsectionto a boolean value. Note that the only
accepted values for the option &end1, any others will rais&alueError

5.8 fileinput — lteration over lines from multiple input streams.

This module implements a helper class and functions to quickly write a loop over standard input or a list of files.

The typical use is:

import fileinput
for line in fileinput.input():
process(line)

This iterates over the lines of all files listed $ys.argv[1:] , defaulting tosys.stdin if the list is empty. If
a filename is-" , itis also replaced bgys.stdin . To specify an alternative list of filenames, pass it as the first
argument tanput() . A single file name is also allowed.

All files are opened in text mode. If an I/O error occurs during opening or reading EXieror s raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for interactive
use, or if it has been explicitly reset (e.g. ussyg.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable at all
is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including the trailing
newline when it is present.

The following function is the primary interface of this module:

5.8. fileinput — lIteration over lines from multiple input streams. 93

input ([filed, inplacd, backug]])
Create an instance of thélelnput class. The instance will be used as global state for the functions of this
module, and is also returned to use during iteration.

The following functions use the global state createdrput() ; if there is no active statdRuntimeError is
raised.

filename ()
Return the name of the file currently being read. Before the first line has been read, Keinms

lineno ()
Return the cumulative line number of the line that has just been read. Before the first line has been read, returns
0. After the last line of the last file has been read, returns the line number of that line.

filelineno 0
Return the line number in the current file. Before the first line has been read, rétukfter the last line of the
last file has been read, returns the line number of that line within the file.

isfirstline 0
Return true iff the line just read is the first line of its file.

isstdin ()
Returns true iff the last line was read fraps.stdin

nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not read
from the file will not count towards the cumulative line count. The filename is not changed until after the first
line of the next file has been read. Before the first line has been read, this function has no effect; it cannot be
used to skip the first file. After the last line of the last file has been read, this function has no effect.

close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

Filelnput ([filed[, inplacd, backug]]])
ClassFilelnput is the implementation; its methoddename() , lineno() , fileline() , Is-
firstline() , isstdin() , nextfile() and close() correspond to the functions of the same
name in the module. In addition it hasreadline() method which returns the next input line, and a
__getitem __() method which implements the sequence behavior. The sequence must be accessed in strictly
sequential order; random access asalline() cannot be mixed.

Optional in-place filtering: if the keyword argumentplace=1 is passed tanput() or to theFilelnput con-

structor, the file is moved to a backup file and standard output is directed to the input file. This makes it possible to
write a filter that rewrites its input file in place. If the keyword argumesitkup='.<some extension>’ is also

given, it specifies the extension for the backup file, and the backup file remains around; by default, the extension is
"bak’ anditis deleted when the output file is closed. In-place filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 8+3 filesystems.

5.9 calendar — Functions that emulate the UNix cal program.

This module allows you to output calendars like theild cal(1) program.

isleap (yean
Returnsl if yearis a leap year.

leapdays (yearl, year?
Return the number of leap years in the rangsafl . .year?.

94 Chapter 5. Miscellaneous Services

weekday (year, month, day
Returns the day of the weeR (s Monday) foryear(1970—...),month(1-12), day(1-31).

monthrange (year, month
Returns weekday of first day of the month and number of days in month, for the spgeifiemhdmonth

monthcalendar (year, month
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros.

prmonth (year, montlﬁ, Width[, Iength]])
Prints a month’s calendar. ifidth is provided, it specifies the width of the columns that the numbers are
centered in. Hengthis given, it specifies the number of lines that each week will use.

prcal (yea
Prints the calendar for the yegear.

5.10 cmd— Build line-oriented command interpreters.

The Cmdclass provides a simple framework for writing line-oriented command interpreters. These are often useful
for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated interface.

Cmd)
A Cmdinstance or subclass instance is a line-oriented interpreter framework. There is no good reason to instan-
tiate Cmditself; rather, it's useful as a superclass of an interpreter class you define yourself in order to inherit
Cmds methods and encapsulate action methods.

Cmd Objects

A Cmdinstance has the following methods:

cmdloop ([intro])
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this override®s the
class member).

If thereadline module is loaded, input will automatically inhebiashlike history-list editing (e.gCtrl-P
scrolls back to the last comman@trl-N forward to the next oneCtrl-F moves the cursor to the right
non-destructivelyCtrl-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the sttEQF’ .

An interpreter instance will recognize a command nafae ° if and only if it has a methodlo _foo() . As
a special case, a line containing only the chara&eiis dispatched to the methadb _help() . As another
special case, a line containing only the charadtéis dispatched to the methatb _shell (if such a method
is defined).

All subclasses o€mdinherit a predefinedo _help . This method, called with an argumdrdr , invokes the
corresponding methokelp _bar() . With no argumentdo_help() lists all available help topics (that is,
all commands with correspondimglp _*() methods), and also lists any undocumented commands.

onecmd(str)
Interpret the argument as though it had been typed in in response to the prompt.

emptyline ()
Method called when an empty line is entered in response to the prompt. If this method is not overridden, it
repeats the last nonempty command entered.

5.10. cmd — Build line-oriented command interpreters. 95

default (line)
Method called on an input line when the command prefix is not recognized. If this method is not overridden, it
prints an error message and returns.

precmd ()
Hook method executed just before the input prompt is issued. This method is a <Cudint exists to be
overridden by subclasses.

postcmd ()
Hook method executed just after a command dispatch is finished. This method is a Gmld inexists to be
overridden by subclasses.

preloop ()
Hook method executed once whemdloop() is called. This method is a stub @©md it exists to be overrid-

den by subclasses.

postloop ()
Hook method executed once whemdloop() is about to return. This method is a stubdmd it exists to be
overridden by subclasses.

Instances o€mdsubclasses have some public instance variables:

prompt
The prompt issued to solicit input.
identchars
The string of characters accepted for the command prefix.
lastcmd
The last nonempty command prefix seen.
intro
A string to issue as an intro or banner. May be overridden by givingitiniloop() method an argument.
doc _header

The header to issue if the help output has a section for documented commands.

misc _header
The header to issue if the help output has a section for miscellaneous help topics (that is, thehe arg)
methods without correspondimtp _*() methods).

undoc _header
The header to issue if the help output has a section for undocumented commands (that is, theré (qre
methods without corresponditglp _*() methods).

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line is drawn. It
defaults to ='.

5.11 shlex — Simple lexical analysis.

New in version 1.5.2.

Theshlex class makes it easy to write lexical analyzers for simple syntaxes resembling that ofithesheéll. This
will often be useful for writing minilanguages, e.g. in run control files for Python applications.

shlex ([stream])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument, if present,
specifies where to read characters from. It must be a file- or stream-like objecewitf) andreadline()
methods. If no argument is given, input will be taken freps.stdin

96 Chapter 5. Miscellaneous Services

shlex Objects

A shlex instance has the following methods:

get _token ()
Return a token. If tokens have been stacked ugimh _token() , pop a token off the stack. Otherwise, read
one from the input stream. If reading encounters an immediate end-of-file, an empty string is returned.

push _token (str)
Push the argument onto the token stack.

Instances okhlex subclasses have some public instance variables which either control lexical analysis or can be
used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the comment beginner
to end of line are ignored. Includes jugt by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includegaldlphanu-
merics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default, includes
space, tab, linefeed and carriage-return.

quotes
Characters that will be considered string quotes. The token accumulates until the same quote is encountered
again (thus, different quote types protect each other as in the shall.) By default, inglsidessingle and
double quotes.

Note that any character not declared to be a word character, whitespace, or a quote will be returned as a single-character
token.

Quote and comment characters are not recognized within words. Thus, the bareawstds™and ‘ain#t ' would
be returned as single tokens by the default parser.

lineno
Source line number (count of newlines seen so far plus one).

token
The token buffer. It may be useful to examine this when catching exceptions.

5.11. shlex — Simple lexical analysis. 97

98

CHAPTER
SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on (almost) all
operating systems, such as files and a clock. The interfaces are generally modelled aftaxtioe © interfaces but
they are available on most other systems as well. Here’s an overview:

0S Miscellaneous OS interfaces.

o0s.path Common pathname manipulations.

stat Utilities for interpreting the results afs.stat() , 0S.Istat() andos.fstat()
time Time access and conversions.

getpass Portable reading of passwords and retrieval of the userid.
getopt Parser for command line options.

tempfile Generate temporary file names.

errno Standard errno system symbols.

glob UNIx shell style pathname pattern expansion.

fnmatch UNIx shell style filename pattern matching.

shutil High-level file operations, including copying.

locale Internationalization services.

6.1 o0s — Miscellaneous OS interfaces

This module provides a more portable way of using operating system (OS) dependent functionality than importing an
OS dependent built-in module likwosix ornt .

This module searches for an OS dependent built-in modulerieor posix and exports the same functions and data

as found there. The design of all Python’s built-in OS dependent modules is such that as long as the same functionality
is available, it uses the same interface; e.g., the funcfostat(path) returns stat information abopathin the

same format (which happens to have originated with the POSIX interface).

Extensions peculiar to a particular OS are also available througbstimodule, but using them is of course a threat
to portability!

Note that after the first times is imported, there isi0 performance penalty in using functions fram instead of
directly from the OS dependent built-in module, so there shouldoeason not to uses !

error
This exception is raised when a function returns a system-related error (e.g., not for illegal argument types). This
is also known as the built-in excepti@dSError . The accompanying value is a pair containing the numeric
error code fromerrno and the corresponding string, as would be printed by the C funpgoror() . See
the modulesrrno , which contains names for the error codes defined by the underlying operating system.

When exceptions are classes, this exception carries two attrileutas, andstrerror . The first holds the
value of the Cerrno variable, and the latter holds the corresponding error messagesfrenor() . For
exceptions that involve a file system path (eldir() orunlink()), the exception instance will contain a

99

third attribute filename , which is the file name passed to the function.
When exceptions are strings, the string for the exceptid@$Error’

name
The name of the OS dependent module imported. The following names have currently been registered:
‘posix’ ,'nt'’ ,’dos’ ,’'mac’ ,’'0s2’
path
The corresponding OS dependent standard module for pathname operatiommsixgath or macpath .
Thus, given the proper importes.path.split(file) is equivalent to but more portable thaosix-
path.split(file) . Note that this is also a valid module: it may be imported directlysapath

Process Parameters

These functions and data items provide information and operate on the current process and user.

chdir (path)
Change the current working directorypath Availability: Macintosh, WNix, Windows.

environ
A mapping object representing the string environment. For exarapig;onHOME'] is the pathname of
your home directory (on some platforms), and is equivalegetenv("HOME") in C.

If the platform supports thputenv() function, this mapping may be used to modify the environment as well
as query the environmentutenv() will be called automatically when the mapping is modified.

If putenv() is not provided, this mapping may be passed to the appropriate process-creation functions to
cause child processes to use a modified environment.

getcwd ()
Return a string representing the current working directory. Availability: Macintosix | JWindows.

getegid ()
Return the current process’ effective group id. Availabilitynid.

geteuid ()
Return the current process’ effective user id. Availabilitysii.

getgid ()
Return the current process’ group id. AvailabilityNLX.

getpgrp ()
Return the current process group id. Availabilitynix.

getpid ()
Return the current process id. Availability:Nuk, Windows.

getppid ()
Return the parent’s process id. Availability NiX.

getuid ()
Return the current process’ user id. AvailabilityNLX.

putenv (varname, valup
Set the environment variable namealrnameto the stringvalue Such changes to the environment affect sub-
processes started withs.system() , popen() orfork() andexecv() . Availability: most flavors of
UNIX, Windows.

Whenputenv() is supported, assignments to itemsomenviron are automatically translated into cor-
responding calls tputenv() ; however, calls tqputenv() don’t updateos.environ , so it is actually
preferable to assign to items 0$.environ

100 Chapter 6. Generic Operating System Services

setgid (gid)
Set the current process’ group id. AvailabilityNuX.

setpgrp ()
Calls the system cafletpgrp() or setpgrp(0, 0) depending on which version is implemented (if any).

See the Wix manual for the semantics. Availability: NUX .

setpgid (pid, pgrp
Calls the system cadletpgid() . See the Wix manual for the semantics. Availability: NUX.

setsid ()
Calls the system cafletsid() . See the Wiix manual for the semantics. Availability: NUx .

setuid (uid)
Set the current process’ user id. AvailabilityNX.

strerror (code
Return the error message corresponding to the error cattidi|n Availability: UNIX, Windows.

umask(mask
Set the current numeric umask and returns the previous umask. Availabitity, Windows.

uname()
Return a 5-tuple containing information identifying the current operating system. The tuple contains 5 strings:
(sysnamg nodenamg release version maching. Some systems truncate the nodename to 8 charac-
ters or to the leading component; a better way to get the hostnaseekst.gethostname() or even
socket.gethostbyaddr(socket.gethostname()) . Availability: recent flavors of Wix.

File Object Creation

These functions create new file objects.

fdopen (fd[, modd, bufsizd |)
Return an open file object connected to the file descrifstoirhe modeandbufsizearguments have the same
meaning as the corresponding arguments to the buipien() function. Availability: Macintosh, Wix,
Windows.

popen (comman@, mode{, bufsize]])
Open a pipe to or fromommand The return value is an open file object connected to the pipe, which can be read
or written depending on whetharodeis'r' (default) orw’ . Thebufsizeargument has the same meaning as
the corresponding argument to the builtepen() function. The exit status of the command (encoded in the
format specified fowait()) is available as the return value of thiese() method of the file object, except
that when the exit status is zero (termination without errdis)je is returned. Availability: Wix, Windows.

File Descriptor Operations

These functions operate on I/O streams referred to using file descriptors.

close (fd)
Close file descriptofd. Availability: Macintosh, Wix, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returppe oy
or pipe() . To close a “file object” returned by the built-in functiopen() or by popen() orfdopen() ,
use itsclose() method.

dup (fd)
Return a duplicate of file descriptf. Availability: Macintosh, Wix, Windows.

dup2 (fd, fd2)

6.1. os — Miscellaneous OS interfaces 101

Duplicate file descriptofd to fd2, closing the latter first if necessary. Availability:Nux, Windows.

fstat (fd)
Return status for file descriptéd, like stat() . Availability: UNix, Windows.

fstatvfs (fd)
Return information about the filesystem containing the file associated with file desddipike statvfs()
Availability: UNIX.

ftruncate (fd, length
Truncate the file corresponding to file descridthrso that it is at modengthbytes in size. Availability: Wix.

Iseek (fd, pos, howy
Set the current position of file descriptiafto positionpos modified byhow. 0 to set the position relative to
the beginning of the filel to set it relative to the current positio@; to set it relative to the end of the file.
Availability: Macintosh, Wix, Windows.

open (file, fIags[, modd)
Open the filefile and set various flags accordingftagsand possibly its mode accordingtwode The default

modeis 0777 (octal), and the current umask value is first masked out. Return the file descriptor for the newly

opened file. Availability: Macintosh, Nix, Windows.

For a description of the flag and mode values, see the C run-time documentation; flag constaDtROKENLY
andO_WRONL)vare defined in this module too (see below).

Note: this function is intended for low-level 1/O. For normal usage, use the built-in funopen() , which
returns a “file object” withread() andwrite() methods (and many more).

pipe ()
Create a pipe. Return a pair of file descriptors w) usable for reading and writing, respectively. Availability:
UNIX, Windows.

read (fd, n)
Read at mosh bytes from file descriptdid. Return a string containing the bytes read. Availability: Macintosh,
UNIX, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returnpe oy
or pipe() . To read a “file object” returned by the built-in functiopen() or by popen() orfdopen() ,
orsys.stdin , useitsread() orreadline() methods.

tcgetpgrp (fd)
Return the process group associated with the terminal givefd lfgn open file descriptor as returned by
open()). Availability: UNIX.

tcsetpgrp (fd, pg
Set the process group associated with the terminal givédd tgn open file descriptor as returneddyyen())
to pg. Availability: UNIX.

ttyname (fd)
Return a string which specifies the terminal device associated with file-desddptbfd is not associated with
a terminal device, an exception is raised. Availabilitysiid.

write (fd, str)
Write the stringstr to file descriptorfd. Return the number of bytes actually written. Availability: Macintosh,
UNIX, Windows.

Note: this function is intended for low-level /0 and must be applied to a file descriptor as returopey
orpipe() . To write a “file object” returned by the built-in functiampen() or by popen() orfdopen() |,
orsys.stdout orsys.stderr ,useitswrite() method.

The following data items are available for use in constructingliusparameter to thepen() function.

O_RDONLY
O_WRONLY

102 Chapter 6. Generic Operating System Services

O_RDWR

O_NDELAY

O_NONBLOCK

O_APPEND

O_DSYNC

O_RSYNC

O_SYNC

O_NOCTTY

O_CREAT

O_EXCL

O_TRUNC
Options for theflag argument to theopen() function. These can be bit-wise OR'd together. Availability:
Macintosh, Wix, Windows.

Files and Directories

access (path, modg
Check read/write/execute permissions for this process or extance péfileReturnl if access is granted) if
not. See the Nix manual for the semantics. Availability: NUX.

chmod(path, modg
Change the mode gfathto the numerieanode Availability: UNix, Windows.

chown (path, uid, gig
Change the owner and group idmdithto the numeriaiid andgid. Availability: UNIX.

link (src, dsj
Create a hard link pointing terc nameddst Availability: UNIX.

listdir (path)
Return a list containing the names of the entries in the directory. The listis in arbitrary order. It does not include
the special entries’ and’..’ even if they are present in the directory. Availability: MacintoshyiiJ,
Windows.

Istat (path
Like stat() , but do not follow symbolic links. Availability: ®iix.

mkfifo (path], moded])
Create a FIFO (a named pipe) namgath with numeric modenode The defaultmodeis 0666 (octal). The
current umask value is first masked out from the mode. Availability1XJ

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes: the
server opens the FIFO for reading, and the client opens it for writing. Notartkiio() doesn’t open the

FIFO — it just creates the rendezvous point.

mkdir (paﬂ{, modé)
Create a directory namgzhthwith numeric modenode The defaulimodeis 0777 (octal). On some systems,
modeis ignored. Where it is used, the current umask value is first masked out. Availability: Macintesh, U
Windows.

makedirs (patr{, modd)
Recursive directory creation function. Likekdir() , but makes all intermediate-level directories needed to
contain the leaf directory. Throws a&mror exception if the leaf directory already exists or cannot be created.
The defaulimodeis 0777 (octal). New in version 1.5.2.

readlink (path)
Return a string representing the path to which the symbolic link points. Availabilityx U

6.1. os — Miscellaneous OS interfaces 103

remove (path)
Remove the filpath Seermdir() below to remove a directory. This is identical to thaink() function
documented below. Availability: Macintosh,Nux, Windows.

removedirs (path
Recursive directory removal function. Works likedir() except that, if the leaf directory is successfully
removed, directories corresponding to rightmost path segments will be pruned way until either the whole path
is consumed or an error is raised (which is ignored, because it generally means that a parent directory is not
empty). Throws arerror exception if the leaf directory could not be successfully removed. New in version
15.2.

rename (src, ds})
Rename the file or directoisrc to dst Availability: Macintosh, WNix, Windows.

renames (old, new
Recursive directory or file renaming function. Works lilemame() , except creation of any intermediate di-
rectories needed to make the new pathname good is attempted first. After the rename, directories corresponding
to rightmost path segments of the old nhame will be pruned away usmgvedirs()

Note: this function can fail with the new directory structure made if you lack permissions needed to remove the
leaf directory or file. New in version 1.5.2.

rmdir (path
Remove the directorgath Availability: Macintosh, Wix, Windows.

stat (path)
Perform astat() system call on the given path. The return value is a tuple of at least 10 integers giving
the most important (and portable) members of dte structure, in the ordest _mode, st _ino , st _dev,
st _nlink ,st _uid ,st _gid , st _size ,st _atime ,st _mtime , st _ctime . More items may be added
at the end by some implementations. (On MS Windows, some items are filled with dummy values.) Availability:
Macintosh, Wix, Windows.

Note: The standard modutéat defines functions and constants that are useful for extracting information from
astat structure.

statvfs (path
Perform astatvfs() system call on the given path. The return value is a tuple of 10 integers giving the most
common members of thetatvfs structure, in the ordefr _bsize , f _frsize ,f _blocks , f _bfree ,
f _bavail ,f_files ,f_ffree ,f _favail ,f _flag ,f _namemax Availability: UNIX.

Note: The standard modukgatvfs defines constants that are useful for extracting information from a
statvfs structure.

symlink ('src, ds}
Create a symbolic link pointing terc nameddst Availability: UNiX.

unlink (path)
Remove the filgpath This is the same function aesmove() ; theunlink() name is its traditional dix
name. Availability: Macintosh, Nix, Windows.

utime (path, (atime, mtimé@)
Set the access and modified time of the file to the given values. (The second argument is a tuple of two items.)
Availability: Macintosh, WNix, Windows.

Process Management

These functions may be used to create and manage additional processes.

execl (path, arg0, argl, .).
This is equivalent toéxecv(path (arg0, argl, ...)) . Availability: U Nix, Windows.

104 Chapter 6. Generic Operating System Services

execle (path, arg0, arg1l, ..., env
This is equivalent toéxecve(path (arg0, argl, ..., eny) . Availability: U NIx, Windows.

execlp (path, arg0, argl, .).
This is equivalent toexecvp(path (arg0, argl, ...)) . Availability: U Nix, Windows.

execv (path, arg3
Execute the executabpathwith argument listargs replacing the current process (i.e., the Python interpreter).
The argument list may be a tuple or list of strings. Availabilitynitd, Windows.

execve (path, args, eny
Execute the executabfgath with argument listargs and environmenény, replacing the current process (i.e.,
the Python interpreter). The argument list may be a tuple or list of strings. The environment must be a dictionary
mapping strings to strings. Availability: \x, Windows.

execvp (path, arg$
This is like ‘execv(path, args) ' but duplicates the shell’'s actions in searching for an executable file in a list
of directories. The directory list is obtained framviron['PATH’] . Availability: UNIx, Windows.

execvpe (path, args, eny
This is a cross betweearxecve() andexecvp() . The directory listis obtained fromn{'PATH’] . Avail-
ability: UNIx, Windows.

_exit (n)
Exit to the system with status without calling cleanup handlers, flushing stdio buffers, etc. Availabilityi
Windows.

Note: the standard way to exitsys.exit(n). _exit() should normally only be used in the child process
after afork()

fork ()
Fork a child process. Retufhin the child, the child’s process id in the parent. Availabilityniy.

kil (pid, sig
Kill the processid with signalsig. Availability: UNix.

nice (incremeny
Add incremento the process’s “niceness”. Return the new niceness. AvailabilityxU

plock (op)
Lock program segments into memory. The valuepf(defined in<sys/lock.h>) determines which seg-
ments are locked. Availability: NiX.

spawnv (mode, path, args
Execute the prograathin a new process, passing the arguments specifiadjsas command-line parameters.
args may be a list or a tuplemodeis a magic operational constant. See the Visuat @Quntime Library
documentation for further information. Availability;: Windows. New in version 1.5.2.

spawnve (mode, path, args, ehv
Execute the programmathin a new process, passing the arguments specifiadjgas command-line parameters
and the contents of the mappiegvas the environmenargsmay be a list or a tuplenodeis a magic operational
constant. See the Visuat@ Runtime Library documentation for further information. Availability: Windows.
New in version 1.5.2.

P_WAIT

P_NOWAIT

P_NOWAITO

P_OVERLAY

P_DETACH
Possible values for thmodeparameter tespawnv() andspawnve() . Availability: Windows. New in
version 1.5.2.

6.1. os — Miscellaneous OS interfaces 105

system (commandl
Execute the command (a string) in a subshell. This is implemented by calling the Standard C faystion
tem() , and has the same limitations. Changegdsix.environ ,Sys.stdin | etc. are not reflected in the
environment of the executed command. The return value is the exit status of the process encoded in the format
specified fowait() . Availability: UNix, Windows.

times ()
Return a 5-tuple of floating point numbers indicating accumulated (CPU or other) times, in seconds. The items
are: user time, system time, children’s user time, children’s system time, and elapsed real time since a fixed
point in the past, in that order. See thelild manual pagéimeg?2) or the corresponding Windows Platform API
documentation. Availability: tix, Windows.

wait ()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication: a 16-bit
number, whose low byte is the signal number that killed the process, and whose high byte is the exit status (if
the signal number is zero); the high bit of the low byte is set if a core file was produced. Availability:. U

waitpid (pid, option3
Wait for completion of a child process given by proces id, and return a tuple containing its process id and exit
status indication (encoded as forit()). The semantics of the call are affected by the value of the integer
options which should b& for normal operation. Availability: BixX.

WNOHANG
The option forwaitpid() to avoid hanging if no child process status is available immediately. Availability:
UNIX.

The following functions take a process stats code as returnechiipid() as a parameter. They may be used to
determine the disposition of a process.

WIFSTOPPEDstatug
Return true if the process has been stopped. AvailabilityiXJ

WIFSIGNALEL statug
Return true if the process exited due to a signal. AvailabilityxJ

WIFEXITED(statug
Return true if the process exited using &heéf(2) system call. Availability: Wix.

WEXITSTATUS statug
If WIFEXITED(statug is true, return the integer parameter to theét(2) system call. Otherwise, the return
value is meaningless. Availability: NIX.

WSTOPSIGstatug
Return the signal which caused the process to stop. AvailabiligixU

WTERMSIGstatug
Return the signal which caused the process to exit. AvailabilitytxJ

Miscellanenous System Data

The follow data values are used to support path manipulation operations. These are defined for all platforms.

Higher-level operations on pathnames are defined imshgath module.

curdir
The constant string used by the OS to refer to the current directory,.’e.g. for POSIX or’;’ for the
Macintosh.

pardir
The constant string used by the OS to refer to the parent directory,.e.g. for POSIX or’:’ for the

106 Chapter 6. Generic Operating System Services

Macintosh.

sep
The character used by the OS to separate pathname components, éog.POSIX or *: ' for the Mac-
intosh. Note that knowing this is not sufficient to be able to parse or concatenate pathnames — use
os.path.split() andos.path.join() — but it is occasionally useful.

altsep
An alternative character used by the OS to separate pathname componéwts)eoif only one separator
character exists. This is set to’‘'on DOS and Windows systems whesep is a backslash.

pathsep
The character conventionally used by the OS to separate search patch components (as in $PATHjoe.g.
POSIX or %’ for DOS and Windows.

defpath
The default search path usedéxec*p*() if the environment doesn’t have RATH’ key.

linesep
The string used to separate (or, rather, terminate) lines on the current platform. This may be a single character,
e.g\n" for POSIXor\r for MacOS, or multiple characters, e’g\n’ for MS-DOS and MS Windows.

6.2 os.path — Common pathname manipulations

This module implements some useful functions on pathnames.

abspath (path
Return a normalized absolutized version of the pathnpatle On most platforms, this is equivalentriorm-
path(join(os.getcwd()), path) . New in version 1.5.2.

basename (path)
Return the base name of pathnapagh This is the second half of the pair returneddpfit(path) .

commonprefix (list)
Return the longest string that is a prefix of all stringdisth If list is empty, return the empty string ().

dirname (path
Return the directory name of pathnapegh This is the first half of the pair returned Bplit(path) .

exists (path
Return true ifpathrefers to an existing path.

expanduser (path)
Return the argument with an initial component of br ‘'~ user replaced by thatisefs home directory. An
initial ‘™" is replaced by the environment variable $SHOME; an initiabser is looked up in the password
directory through the built-in modulewd. If the expansion fails, or if the path does not begin with a tilde, the
path is returned unchanged. On the Macintosh, this always rgtathsinchanged.

expandvars (path)
Return the argument with environment variables expanded. Substrings of thefioamé or ‘ ${ namé ' are
replaced by the value of environment variableme Malformed variable names and references to non-existing
variables are left unchanged. On the Macintosh, this always repathsinchanged.

getatime (path)
Return the time of last access filename The return value is integer giving the number of seconds since the
epoch (see theme module). Rais®s.error if the file does not exist or is inaccessible. New in version
1.5.2.

getmtime (path)
Return the time of last modification fifename The return value is integer giving the number of seconds since

6.2. os.path — Common pathname manipulations 107

the epoch (see thene module). Rais@s.error if the file does not exist or is inaccessible. New in version
1.5.2.

getsize (path
Return the size, in bytes, dfename Raiseos.error if the file does not exist or is inaccessible. New in
version 1.5.2.

isabs (path
Return true ifpathis an absolute pathname (begins with a slash).

isfile (path
Return true ifpathis an existing regular file. This follows symbolic links, so bathnk() andisfile()
can be true for the same path.

isdir (path
Return true ifpathis an existing directory. This follows symbolic links, so baghnk() andisdir() can
be true for the same path.

islink (' path
Return true ifpathrefers to a directory entry that is a symbolic link. Always false if symbolic links are not
supported.

ismount (path
Return true if pathnampathis amount point a point in a file system where a different file system has been
mounted. The function checks whethgaths parent, path'..’, is on a different device thapath or whether
‘path’..” and path point to the same i-node on the same device — this should detect mount points forall U
and POSIX variants.

join (pathl[, pathz{,]])
Joins one or more path components intelligently. If any component is an absolute path, all previous components
are thrown away, and joining continues. The return value is the concatenafiathdf and optionallypath2
etc., with exactly one slasi’() inserted between components, unleathis empty.

normcase (path)
Normalize the case of a pathname. ORI, this returns the path unchanged; on case-insensitive filesystems,
it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.

normpath (path)
Normalize a pathname. This collapses redundant separators and up-level referenc®8Be,p/./B and
Al/fool..IB all becomeA/B . It does not normalize the case (usermcase() for that). On Windows, it
does converts forward slashes to backward slashes.

samefile (pathl, path?
Return true if both pathname arguments refer to the same file or directory (as indicated by device number and
i-node number). Raise an exception iba.stat() call on either pathname fails. Availability: Macintosh,
UNIX.

sameopenfile (fpl, fp2
Return true if the file objectipl andfp2 refer to the same file. The two file objects may represent different file
descriptors. Availability: Macintosh, MWIX.

samestat (statl, stat®
Return true if the stat tuplestatl and stat2refer to the same file. These structures may have been returned

by fstat() ,Istat() ,orstat() . This function implements the underlying comparison useddye-
file() andsameopenfile() . Availability: Macintosh, WIXx.
split (path)

Split the pathnamgath into a pair,(head tail) wheretail is the last pathname component ameld is
everything leading up to that. Thail part will never contain a slash; jifathends in a slashail will be empty.

If there is no slash ipath headwill be empty. If pathis empty, bottheadandtail are empty. Trailing slashes
are stripped fronneadunless it is the root (one or more slashes only). In nearly all cgse$é, head tail)

108 Chapter 6. Generic Operating System Services

equalspath (the only exception being when there were multiple slashes sepahatautjrom tail).

splitdrive (path)
Split the pathnampathinto a pair(drive, tail) wheredriveis either a drive specification or the empty string.
On systems which do not use drive specificatiairsje will always be the empty string. In all caseBjve +
tail will be the same apath

splitext (path
Split the pathnameathinto a pair(root, ex such thatoot + ext == path andextis empty or begins
with a period and contains at most one period.

walk (path, visit, arg
Calls the functiorvisit with argumentg arg, dirname name$ for each directory in the directory tree rooted
at path (including path itself, if it is a directory). The argumerdirnamespecifies the visited directory, the
argumennamedists the files in the directory (gotten froos.listdir(dirnamg). Thevisit function may
modify namedo influence the set of directories visited beldisname e.g., to avoid visiting certain parts of the
tree. (The object referred to mameanust be modified in place, usimtel or slice assignment.)

6.3 stat — Interpreting stat() results
Thestat module defines constants and functions for interpreting the resutis.stat() , 0s.fstat() and
os.Istat() (if they exist). For complete details about that() , fstat() andlstat() calls, consult the

documentation for your system.
Thestat module defines the following functions to test for specific file types:

S_ISDIR (mod¢
Return non-zero if the mode is from a directory.

S_ISCHR(modg
Return non-zero if the mode is from a character special device file.

S_ISBLK (modg
Return non-zero if the mode is from a block special device file.

S_ISREG(modg
Return non-zero if the mode is from a regular file.

S_ISFIFO (modg
Return non-zero if the mode is from a FIFO (hamed pipe).

S_ISLNK(modg
Return non-zero if the mode is from a symbolic link.

S_ISSOCK(modg
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file's mode:

S_IMODKE modg¢
Return the portion of the file’'s mode that can be sebbychmod() —that is, the file’s permission bits, plus
the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

S_IFMT(mod§g
Return the portion of the file’'s mode that describes the file type (used (5 #8¥() functions above).

Normally, you would use thes.path.is*() functions for testing the type of a file; the functions here are useful
when you are doing multiple tests of the same file and wish to avoid the overheadstdtifie system call for each
test. These are also useful when checking for information about a file that isn't handbexdolayh |, like the tests

for block and character devices.

6.3. stat — Interpreting stat() results 109

All the variables below are simply symbolic indexes into the 10-tuple returnemststat() , 0s.fstat() or

os.Istat()

ST_MODE
Inode protection mode.

ST_INO
Inode number.

ST_DEV
Device inode resides on.

ST_NLINK

Number of links to the inode.

ST_UID
User id of the owner.

ST_GID
Group id of the owner.

ST_SIZE
File size in bytes.

ST_ATIME
Time of last access.

ST_MTIME
Time of last modification.

ST_CTIME

Time of last status change (see manual pages for details).

Example:

import o0s, sys
from stat import *

def process(dir, func):

"recursively descend the directory rooted at dir, calling func for

”

each regular file

for f in os.listdir(dir):

mode = os.stat('%s/%s’ % (dir, f))[ST_MODE]
if S_ISDIR(mode):

recurse into directory
process('%s/%s’ % (dir, f), func)

elif S_ISREG(mode):

func('%s/%s’ % (dir, f))

else:

def f(file):

print 'Skipping %s/%s’ % (dir, f)

print 'frobbed’, file

if __name__

’

=='_main__"

process(sys.argv[1], f)

110

Chapter 6. Generic Operating System Services

6.4 time — Time access and conversions.

This module provides various time-related functions. It is always available.

An explanation of some terminology and conventions is in order.

e Theepochis the point where the time starts. On January 1st of that year, at 0 hours, the “time since the epoch”
is zero. For WX, the epoch is 1970. To find out what the epoch is, loafnatime(0)

e The functions in this module do not handle dates and times before the epoch or far in the future. The cut-off
point in the future is determined by the C library; fonLX, it is typically in 2038.

e Year 2000 (Y2K) issues Python depends on the platform’s C library, which generally doesn’t have year 2000
issues, since all dates and times are represented internally as seconds since the epoch. Functions accepting a time
tuple (see below) generally require a 4-digit year. For backward compatibility, 2-digit years are supported if the
module variableaccept2dyear is a non-zero integer; this variable is initializedtainless the environment
variable $PYTHONY2K is set to a non-empty string, in which case it is initialize@.toThus, you can set
$PYTHONY2K to a non-empty string in the environment to require 4-digit years for all year input. When
2-digit years are accepted, they are converted according to the POSIX or X/Open standard: values 69-99 are
mapped to 1969-1999, and values 0—68 are mapped to 2000—-2068. Values 100-1899 are always illegal. Note
that this is new as of Python 1.5.2(a2); earlier versions, up to Python 1.5.1 and 1.5.2a1, would add 1900 to year
values below 1900.

e UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The acronym UTC
is not a mistake but a compromise between English and French.

e DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year. DST
rules are magic (determined by local law) and