

BIND 9 Administrator Reference Manual

	1. Introduction
	1.1. Scope of Document

	1.2. Organization of This Document

	1.3. Conventions Used in This Document

	1.4. The Domain Name System (DNS)

	2. BIND Resource Requirements
	2.1. Hardware Requirements

	2.2. CPU Requirements

	2.3. Memory Requirements

	2.4. Name Server-Intensive Environment Issues

	2.5. Supported Operating Systems

	3. Name Server Configuration
	3.1. Sample Configurations

	3.2. Load Balancing

	3.3. Name Server Operations

	3.4. Plugins

	4. BIND 9 Configuration Reference
	4.1. Configuration File Elements

	4.2. Configuration File Grammar

	4.3. Zone File

	4.4. BIND 9 Statistics

	5. Advanced DNS Features
	5.1. Notify

	5.2. Dynamic Update

	5.3. Incremental Zone Transfers (IXFR)

	5.4. Split DNS

	5.5. TSIG

	5.6. TKEY

	5.7. SIG(0)

	5.8. DNSSEC

	5.9. DNSSEC, Dynamic Zones, and Automatic Signing

	5.10. Dynamic Trust Anchor Management

	5.11. PKCS#11 (Cryptoki) Support

	5.12. Dynamically Loadable Zones (DLZ)

	5.13. Dynamic Database (DynDB)

	5.14. Catalog Zones

	5.15. IPv6 Support in BIND 9

	6. BIND 9 Security Considerations
	6.1. Access Control Lists

	6.2. Chroot and Setuid

	6.3. Dynamic Update Security

	7. Troubleshooting
	7.1. Common Problems

	7.2. Incrementing and Changing the Serial Number

	7.3. Where Can I Get Help?

Appendices

	Release Notes
	Introduction

	Supported Platforms

	Download

	Notes for BIND 9.17.3

	Notes for BIND 9.17.2

	Notes for BIND 9.17.1

	Notes for BIND 9.17.0

	License

	End of Life

	Thank You

	A Brief History of the DNS and BIND

	General DNS Reference Information
	IPv6 Addresses (AAAA)

	Bibliography (and Suggested Reading)

	Internet Standards

	Proposed Standards

	Informational RFCs

	Experimental RFCs

	Best Current Practice RFCs

	Historic RFCs

	RFCs of Type “Unknown”

	Obsoleted and Unimplemented Experimental RFCs

	RFCs No Longer Supported in BIND 9

	Manual Pages
	arpaname - translate IP addresses to the corresponding ARPA names

	ddns-confgen - ddns key generation tool

	delv - DNS lookup and validation utility

	dig - DNS lookup utility

	dnssec-cds - change DS records for a child zone based on CDS/CDNSKEY

	dnssec-dsfromkey - DNSSEC DS RR generation tool

	dnssec-importkey - import DNSKEY records from external systems so they can be managed

	dnssec-keyfromlabel - DNSSEC key generation tool

	dnssec-keygen: DNSSEC key generation tool

	dnssec-revoke - set the REVOKED bit on a DNSSEC key

	dnssec-settime: set the key timing metadata for a DNSSEC key

	dnssec-signzone - DNSSEC zone signing tool

	dnssec-verify - DNSSEC zone verification tool

	dnstap-read - print dnstap data in human-readable form

	filter-aaaa.so - filter AAAA in DNS responses when A is present

	host - DNS lookup utility

	mdig - DNS pipelined lookup utility

	named-checkconf - named configuration file syntax checking tool

	named-checkzone, named-compilezone - zone file validity checking or converting tool

	named-journalprint - print zone journal in human-readable form

	named-nzd2nzf - convert an NZD database to NZF text format

	named-rrchecker - syntax checker for individual DNS resource records

	named.conf - configuration file for named

	named - Internet domain name server

	nsec3hash - generate NSEC3 hash

	nslookup - query Internet name servers interactively

	nsupdate - dynamic DNS update utility

	pkcs11-keygen - generate keys on a PKCS#11 device

	pkcs11-list - list PKCS#11 objects

	pkcs11-tokens - list PKCS#11 available tokens

	rndc-confgen - rndc key generation tool

	rndc.conf - rndc configuration file

	rndc - name server control utility

1. Introduction

The Internet Domain Name System (DNS) consists of the syntax to specify
the names of entities in the Internet in a hierarchical manner, the
rules used for delegating authority over names, and the system
implementation that actually maps names to Internet addresses. DNS data
is maintained in a group of distributed hierarchical databases.

1.1. Scope of Document

The Berkeley Internet Name Domain (BIND) implements a domain name server
for a number of operating systems. This document provides basic
information about the installation and care of the Internet Systems
Consortium (ISC) BIND version 9 software package for system
administrators.

This manual covers BIND version 9.17.3.

1.2. Organization of This Document

In this document, Chapter 1 introduces the basic DNS and BIND
concepts. Chapter 2 describes resource requirements for running BIND
in various environments. Information in Chapter 3 is task-oriented
in its presentation and is organized functionally, to aid in the process
of installing the BIND 9 software. The task-oriented section is followed
by Chapter 4, which is organized as a reference manual to aid in the ongoing
maintenance of the software. Chapter 5 contains more advanced concepts that
the system administrator may need for implementing certain options. Chapter 6
addresses security considerations, and Chapter 7 contains troubleshooting help.
The main body of the document is followed by several appendices which contain
useful reference information, such as a bibliography and historic
information related to BIND and the Domain Name System.

1.3. Conventions Used in This Document

In this document, we generally use Fixed Width text to indicate the
following types of information:

	pathnames

	filenames

	URLs

	hostnames

	mailing list names

	new terms or concepts

	literal user input

	program output

	keywords

	variables

Text in “quotes,” bold, or italics is also used for emphasis or clarity.

1.4. The Domain Name System (DNS)

This document explains the installation and upkeep
of the BIND (Berkeley Internet Name Domain) software package. We
begin by reviewing the fundamentals of the Domain Name System (DNS) as
they relate to BIND.

1.4.1. DNS Fundamentals

The Domain Name System (DNS) is a hierarchical, distributed database. It
stores information for mapping Internet host names to IP addresses and
vice versa, mail routing information, and other data used by Internet
applications.

Clients look up information in the DNS by calling a resolver library,
which sends queries to one or more name servers and interprets the
responses. The BIND 9 software distribution contains a name server,
named, and a set of associated tools.

1.4.2. Domains and Domain Names

The data stored in the DNS is identified by domain names that are
organized as a tree according to organizational or administrative
boundaries. Each node of the tree, called a domain, is given a label.
The domain name of the node is the concatenation of all the labels on
the path from the node to the root node. This is represented in
written form as a string of labels listed from right to left and
separated by dots. A label need only be unique within its parent domain.

For example, a domain name for a host at the company Example, Inc.
could be ourhost.example.com, where com is the top-level domain
to which ourhost.example.com belongs, example is a subdomain of
com, and ourhost is the name of the host.

For administrative purposes, the name space is partitioned into areas
called zones, each starting at a node and extending down to the “leaf”
nodes or to nodes where other zones start. The data for each zone is
stored in a name server, which answers queries about the zone using
the DNS protocol.

The data associated with each domain name is stored in the form of
resource records (RRs). Some of the supported resource record types
are described in Types of Resource Records and When to Use Them.

For more detailed information about the design of the DNS and the DNS
protocol, please refer to the standards documents listed in Request for Comments (RFCs).

1.4.3. Zones

To properly operate a name server, it is important to understand the
difference between a zone and a domain.

As stated previously, a zone is a point of delegation in the DNS tree. A
zone consists of those contiguous parts of the domain tree for which a
name server has complete information and over which it has authority. It
contains all domain names from a certain point downward in the domain
tree except those which are delegated to other zones. A delegation point
is marked by one or more NS records in the parent zone, which should
be matched by equivalent NS records at the root of the delegated zone.

For instance, consider the example.com domain, which includes names
such as host.aaa.example.com and host.bbb.example.com, even
though the example.com zone includes only delegations for the
aaa.example.com and bbb.example.com zones. A zone can map
exactly to a single domain, but could also include only part of a
domain, the rest of which could be delegated to other name servers.
Every name in the DNS tree is a domain, even if it is terminal, that
is, has no subdomains. Every subdomain is a domain and every domain
except the root is also a subdomain. The terminology is not intuitive
and we suggest reading RFC 1033 [https://tools.ietf.org/html/rfc1033.html], RFC 1034 [https://tools.ietf.org/html/rfc1034.html], and RFC 1035 [https://tools.ietf.org/html/rfc1035.html] to gain a complete
understanding of this difficult and subtle topic.

Though BIND 9 is called a “domain name server,” it deals primarily in
terms of zones. The primary and secondary declarations in the named.conf
file specify zones, not domains. When BIND asks some other site if it is
willing to be a secondary server for a domain, it is actually asking
for secondary service for some collection of zones.

1.4.4. Authoritative Name Servers

Each zone is served by at least one authoritative name server, which
contains the complete data for the zone. To make the DNS tolerant of
server and network failures, most zones have two or more authoritative
servers, on different networks.

Responses from authoritative servers have the “authoritative answer”
(AA) bit set in the response packets. This makes them easy to identify
when debugging DNS configurations using tools like dig (Diagnostic Tools).

1.4.4.1. The Primary Server

The authoritative server, where the main copy of the zone data is
maintained, is called the primary (formerly master) server, or simply the
primary. Typically it loads the zone contents from some local file
edited by humans or perhaps generated mechanically from some other local
file which is edited by humans. This file is called the zone file or
master file.

In some cases, however, the master file may not be edited by humans at
all, but may instead be the result of dynamic update operations.

1.4.4.2. Secondary Servers

The other authoritative servers, the secondary servers (formerly known as
slave servers) load the zone contents from another server using a
replication process known as a zone transfer. Typically the data is
transferred directly from the primary, but it is also possible to
transfer it from another secondary. In other words, a secondary server may
itself act as a primary to a subordinate secondary server.

Periodically, the secondary server must send a refresh query to determine
whether the zone contents have been updated. This is done by sending a
query for the zone’s Start of Authority (SOA) record and checking whether the SERIAL field
has been updated; if so, a new transfer request is initiated. The timing
of these refresh queries is controlled by the SOA REFRESH and RETRY
fields, but can be overridden with the max-refresh-time,
min-refresh-time, max-retry-time, and min-retry-time
options.

If the zone data cannot be updated within the time specified by the SOA
EXPIRE option (up to a hard-coded maximum of 24 weeks), the secondary
zone expires and no longer responds to queries.

1.4.4.3. Stealth Servers

Usually, all of the zone’s authoritative servers are listed in NS records
in the parent zone. These NS records constitute a delegation of the
zone from the parent. The authoritative servers are also listed in the
zone file itself, at the top level or apex of the zone.
Servers that are not in the parent’s
NS delegation can be listed in the zone’s top-level NS records, but servers that are not present at the zone’s top level
cannot be listed in the parent’s delegation.

A stealth server is a server that is authoritative for a zone but is
not listed in that zone’s NS records. Stealth servers can be used for
keeping a local copy of a zone, to speed up access to the zone’s records
or to make sure that the zone is available even if all the “official”
servers for the zone are inaccessible.

A configuration where the primary server itself is a stealth
server is often referred to as a “hidden primary” configuration. One use
for this configuration is when the primary is behind a firewall
and is therefore unable to communicate directly with the outside world.

1.4.5. Caching Name Servers

The resolver libraries provided by most operating systems are stub
resolvers, meaning that they are not capable of performing the full DNS
resolution process by themselves by talking directly to the
authoritative servers. Instead, they rely on a local name server to
perform the resolution on their behalf. Such a server is called a
recursive name server; it performs recursive lookups for local
clients.

To improve performance, recursive servers cache the results of the
lookups they perform. Since the processes of recursion and caching are
intimately connected, the terms recursive server and caching server
are often used synonymously.

The length of time for which a record may be retained in the cache of a
caching name server is controlled by the Time-To-Live (TTL) field
associated with each resource record.

1.4.5.1. Forwarding

Even a caching name server does not necessarily perform the complete
recursive lookup itself. Instead, it can forward some or all of the
queries that it cannot satisfy from its cache to another caching name
server, commonly referred to as a forwarder.

There may be one or more forwarders, and they are queried in turn until
the list is exhausted or an answer is found. Forwarders are typically
used when it is undesirable for all the servers at a given site to interact
directly with the rest of the Internet’s servers. A typical scenario
involves internal DNS servers and an Internet firewall.
Servers unable to pass packets through the firewall forward their requests to the
server that can, and that server queries the Internet DNS
servers on the internal servers’ behalf.

1.4.6. Name Servers in Multiple Roles

The BIND name server can simultaneously act as a primary for some zones,
a secondary for other zones, and as a caching (recursive) server for a set
of local clients.

However, since the functions of authoritative name service and
caching/recursive name service are logically separate, it is often
advantageous to run them on separate server machines. A server that only
provides authoritative name service (an authoritative-only server) can
run with recursion disabled, improving reliability and security. A
server that is not authoritative for any zones and only provides
recursive service to local clients (a caching-only server) does not
need to be reachable from the Internet at large and can be placed inside
a firewall.

2. BIND Resource Requirements

2.1. Hardware Requirements

DNS hardware requirements have traditionally been quite modest. For many
installations, servers that have been retired from active duty
have performed admirably as DNS servers.

However, the DNSSEC features of BIND 9 may be quite CPU-intensive,
so organizations that make heavy use of these features may wish
to consider larger systems for these applications. BIND 9 is fully
multithreaded, allowing full utilization of multiprocessor systems for
installations that need it.

2.2. CPU Requirements

CPU requirements for BIND 9 range from i386-class machines, for serving
static zones without caching, to enterprise-class machines
to process many dynamic updates and DNSSEC-signed zones, serving
many thousands of queries per second.

2.3. Memory Requirements

Server memory must be sufficient to hold both the cache and the
zones loaded from disk. The max-cache-size option can
limit the amount of memory used by the cache, at the expense of reducing
cache hit rates and causing more DNS traffic. It is still good practice
to have enough memory to load all zone and cache data into memory;
unfortunately, the best way to determine this for a given installation
is to watch the name server in operation. After a few weeks, the server
process should reach a relatively stable size where entries are expiring
from the cache as fast as they are being inserted.

2.4. Name Server-Intensive Environment Issues

For name server-intensive environments, there are two
configurations that may be used. The first is one where clients and any
second-level internal name servers query a main name server, which has
enough memory to build a large cache; this approach minimizes the
bandwidth used by external name lookups. The second alternative is to
set up second-level internal name servers to make queries independently.
In this configuration, none of the individual machines need to have as
much memory or CPU power as in the first alternative, but this has the
disadvantage of making many more external queries, as none of the name
servers share their cached data.

2.5. Supported Operating Systems

ISC BIND 9 compiles and runs on many Unix-like operating
systems and on Microsoft Windows Server 2012 R2, 2016, and Windows 10.
For an up-to-date list of supported systems, see the PLATFORMS.md file
in the top-level directory of the BIND 9 source distribution.

3. Name Server Configuration

In this chapter we provide some suggested configurations, along with
guidelines for their use. We suggest reasonable values for certain
option settings.

3.1. Sample Configurations

3.1.1. A Caching-only Name Server

The following sample configuration is appropriate for a caching-only
name server for use by clients internal to a corporation. All queries
from outside clients are refused using the allow-query option.
The same effect can be achieved using suitable firewall
rules.

// Two corporate subnets we wish to allow queries from.
acl corpnets { 192.168.4.0/24; 192.168.7.0/24; };
options {
 // Working directory
 directory "/etc/namedb";

 allow-query { corpnets; };
};
// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
 type primary;
 file "localhost.rev";
 notify no;
};

3.1.2. An Authoritative-only Name Server

This sample configuration is for an authoritative-only server that is
the primary server for example.com and a secondary server for the subdomain
eng.example.com.

options {
 // Working directory
 directory "/etc/namedb";
 // Do not allow access to cache
 allow-query-cache { none; };
 // This is the default
 allow-query { any; };
 // Do not provide recursive service
 recursion no;
};

// Provide a reverse mapping for the loopback
// address 127.0.0.1
zone "0.0.127.in-addr.arpa" {
 type primary;
 file "localhost.rev";
 notify no;
};
// We are the primary server for example.com
zone "example.com" {
 type primary;
 file "example.com.db";
 // IP addresses of secondary servers allowed to
 // transfer example.com
 allow-transfer {
 192.168.4.14;
 192.168.5.53;
 };
};
// We are a secondary server for eng.example.com
zone "eng.example.com" {
 type secondary;
 file "eng.example.com.bk";
 // IP address of eng.example.com primary server
 masters { 192.168.4.12; };
};

3.2. Load Balancing

A primitive form of load balancing can be achieved in the DNS by using
multiple records (such as multiple A records) for one name.

For example, assuming three HTTP servers with network addresses of
10.0.0.1, 10.0.0.2, and 10.0.0.3, a set of records such as the following
means that clients will connect to each machine one-third of the time:

	Name

	TTL

	CLASS

	TYPE

	Resource Record (RR) Data

	www

	600

	IN

	A

	10.0.0.1

	
	600

	IN

	A

	10.0.0.2

	
	600

	IN

	A

	10.0.0.3

When a resolver queries for these records, BIND rotates them and
responds to the query with the records in a different order. In the
example above, clients randomly receive records in the order 1, 2,
3; 2, 3, 1; and 3, 1, 2. Most clients use the first record returned
and discard the rest.

For more detail on ordering responses, check the rrset-order
sub-statement in the options statement; see RRset Ordering.

3.3. Name Server Operations

3.3.1. Tools for Use With the Name Server Daemon

This section describes several indispensable diagnostic, administrative,
and monitoring tools available to the system administrator for
controlling and debugging the name server daemon.

3.3.1.1. Diagnostic Tools

The dig, host, and nslookup programs are all command-line
tools for manually querying name servers. They differ in style and
output format.

	dig

	dig is the most versatile and complete of these lookup tools. It
has two modes: simple interactive mode for a single query, and batch
mode, which executes a query for each in a list of several query
lines. All query options are accessible from the command line.

dig [@server] domain [query-type][query-class][+query-option][-dig-option][%comment]

The usual simple use of dig takes the form

dig @server domain query-type query-class

For more information and a list of available commands and options,
see the dig man page.

	host

	The host utility emphasizes simplicity and ease of use. By
default, it converts between host names and Internet addresses, but
its functionality can be extended with the use of options.

host [-aCdlnrsTwv][-c class][-N ndots][-t type][-W timeout][-R retries]
[-m flag][-4][-6] hostname [server]

For more information and a list of available commands and options,
see the host man page.

	nslookup

	nslookup has two modes: interactive and non-interactive.
Interactive mode allows the user to query name servers for
information about various hosts and domains, or to print a list of
hosts in a domain. Non-interactive mode is used to print just the
name and requested information for a host or domain.

nslookup [-option][[host-to-find]|[-[server]]]

Interactive mode is entered when no arguments are given (the default
name server is used) or when the first argument is a hyphen
(-) and the second argument is the host name or Internet address of
a name server.

Non-interactive mode is used when the name or Internet address of the
host to be looked up is given as the first argument. The optional
second argument specifies the host name or address of a name server.

Due to its arcane user interface and frequently inconsistent
behavior, we do not recommend the use of nslookup. Use dig
instead.

3.3.1.2. Administrative Tools

Administrative tools play an integral part in the management of a
server.

	named-checkconf

	The named-checkconf program checks the syntax of a named.conf
file.

named-checkconf [-jvz][-t directory][filename]

	named-checkzone

	The named-checkzone program checks a zone file for syntax and
consistency.

named-checkzone [-djqvD][-c class][-o output][-t directory][-w directory]
[-k (ignore|warn|fail)][-n (ignore|warn|fail)][-W (ignore|warn)] zone [filename]

	named-compilezone

	This tool is similar to named-checkzone, but it always dumps the zone content
to a specified file (typically in a different format).

	rndc

	The remote name daemon control (rndc) program allows the system
administrator to control the operation of a name server. If rndc is run
without any options, it displays a usage message as
follows:

rndc [-c config][-s server][-p port][-y key] command [command...]

See rndc - name server control utility for details of the available rndc
commands.

rndc requires a configuration file, since all communication with
the server is authenticated with digital signatures that rely on a
shared secret, and there is no way to provide that secret other than
with a configuration file. The default location for the rndc
configuration file is /etc/rndc.conf, but an alternate location
can be specified with the -c option. If the configuration file is
not found, rndc also looks in /etc/rndc.key (or whatever
sysconfdir was defined when the BIND build was configured). The
rndc.key file is generated by running rndc-confgen -a as
described in controls Statement Definition and Usage.

The format of the configuration file is similar to that of
named.conf, but is limited to only four statements: the options,
key, server, and include statements. These statements are
what associate the secret keys to the servers with which they are
meant to be shared. The order of statements is not significant.

The options statement has three clauses: default-server,
default-key, and default-port. default-server takes a
host name or address argument and represents the server that is
contacted if no -s option is provided on the command line.
default-key takes the name of a key as its argument, as defined
by a key statement. default-port specifies the port to which
rndc should connect if no port is given on the command line or in
a server statement.

The key statement defines a key to be used by rndc when
authenticating with named. Its syntax is identical to the key
statement in named.conf. The keyword key is followed by a key
name, which must be a valid domain name, though it need not actually
be hierarchical; thus, a string like rndc_key is a valid name.
The key statement has two clauses: algorithm and secret.
While the configuration parser accepts any string as the argument
to algorithm, currently only the strings hmac-md5,
hmac-sha1, hmac-sha224, hmac-sha256,
hmac-sha384, and hmac-sha512 have any meaning. The secret
is a Base64-encoded string as specified in RFC 3548 [https://tools.ietf.org/html/rfc3548.html].

The server statement associates a key defined using the key
statement with a server. The keyword server is followed by a host
name or address. The server statement has two clauses: key
and port. The key clause specifies the name of the key to be
used when communicating with this server, and the port clause can
be used to specify the port rndc should connect to on the server.

A sample minimal configuration file is as follows:

key rndc_key {
 algorithm "hmac-sha256";
 secret
 "c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1hZGUgZm9yIGEgd29tYW4K";
};
options {
 default-server 127.0.0.1;
 default-key rndc_key;
};

This file, if installed as /etc/rndc.conf, allows the
command:

$ rndc reload

to connect to 127.0.0.1 port 953 and causes the name server to reload,
if a name server on the local machine is running with the following
controls statements:

controls {
 inet 127.0.0.1
 allow { localhost; } keys { rndc_key; };
};

and it has an identical key statement for rndc_key.

Running the rndc-confgen program conveniently creates an
rndc.conf file, and also displays the corresponding
controls statement needed to add to named.conf.
Alternatively, it is possible to run rndc-confgen -a to set up an
rndc.key file and not modify named.conf at all.

3.3.2. Signals

Certain Unix signals cause the name server to take specific actions, as
described in the following table. These signals can be sent using the
kill command.

	SIGHUP

	Causes the server to read named.conf and reload
the database.

	SIGTERM

	Causes the server to clean up and exit.

	SIGINT

	Causes the server to clean up and exit.

3.4. Plugins

Plugins are a mechanism to extend the functionality of named using
dynamically loadable libraries. By using plugins, core server
functionality can be kept simple for the majority of users; more complex
code implementing optional features need only be installed by users that
need those features.

The plugin interface is a work in progress, and is expected to evolve as
more plugins are added. Currently, only “query plugins” are supported;
these modify the name server query logic. Other plugin types may be
added in the future.

The only plugin currently included in BIND is filter-aaaa.so, which
replaces the filter-aaaa feature that previously existed natively as
part of named. The code for this feature has been removed from
named and can no longer be configured using standard named.conf
syntax, but linking in the filter-aaaa.so plugin provides identical
functionality.

3.4.1. Configuring Plugins

A plugin is configured with the plugin statement in named.conf:

plugin query "library.so" {
 parameters
};

In this example, file library.so is the plugin library. query
indicates that this is a query plugin.

Multiple plugin statements can be specified, to load different
plugins or multiple instances of the same plugin.

parameters are passed as an opaque string to the plugin’s initialization
routine. Configuration syntax differs depending on the module.

3.4.2. Developing Plugins

Each plugin implements four functions:

	plugin_register
to allocate memory, configure a plugin instance, and attach to hook
points within
named
,

	plugin_destroy
to tear down the plugin instance and free memory,

	plugin_version
to check that the plugin is compatible with the current version of
the plugin API,

	plugin_check
to test syntactic correctness of the plugin parameters.

At various locations within the named source code, there are “hook
points” at which a plugin may register itself. When a hook point is
reached while named is running, it is checked to see whether any
plugins have registered themselves there; if so, the associated “hook
action” - a function within the plugin library - is called. Hook
actions may examine the runtime state and make changes: for example,
modifying the answers to be sent back to a client or forcing a query to
be aborted. More details can be found in the file
lib/ns/include/ns/hooks.h.

4. BIND 9 Configuration Reference

4.1. Configuration File Elements

Following is a list of elements used throughout the BIND configuration
file documentation:

	acl_name

	The name of an address_match_list as defined by the acl statement.

	address_match_list

	A list of one or more ip_addr, ip_prefix, key_id, or acl_name elements; see Address Match Lists.

	primaries_list

	A named list of one or more ip_addr with optional key_id and/or ip_port. A primaries_list may include other primaries_list.

	domain_name

	A quoted string which is used as a DNS name; for example. my.test.domain.

	namelist

	A list of one or more domain_name elements.

	dotted_decimal

	One to four integers valued 0 through 255 separated by dots (.), such as 123.45.67 or 89.123.45.67.

	ip4_addr

	An IPv4 address with exactly four elements in dotted_decimal notation.

	ip6_addr

	An IPv6 address, such as 2001:db8::1234. IPv6-scoped addresses that have ambiguity on their scope zones must be disambiguated by an appropriate zone ID with the percent character (%) as a delimiter. It is strongly recommended to use string zone names rather than numeric identifiers, to be robust against system configuration changes. However, since there is no standard mapping for such names and identifier values, only interface names as link identifiers are supported, assuming one-to-one mapping between interfaces and links. For example, a link-local address fe80::1 on the link attached to the interface ne0 can be specified as fe80::1%ne0. Note that on most systems link-local addresses always have ambiguity and need to be disambiguated.

	ip_addr

	An ip4_addr or ip6_addr.

	ip_dscp

	A number between 0 and 63, used to select a differentiated services code point (DSCP) value for use with outgoing traffic on operating systems that support DSCP.

	ip_port

	An IP port number. The number is limited to 0 through 65535, with values below 1024 typically restricted to use by processes running as root. In some cases, an asterisk (*) character can be used as a placeholder to select a random high-numbered port.

	ip_prefix

	An IP network specified as an ip_addr, followed by a slash (/) and then the number of bits in the netmask. Trailing zeros in an``ip_addr`` may be omitted. For example, 127/8 is the network 127.0.0.0``with netmask ``255.0.0.0 and 1.2.3.0/28 is network 1.2.3.0 with netmask 255.255.255.240.
When specifying a prefix involving a IPv6-scoped address, the scope may be omitted. In that case, the prefix matches packets from any scope.

	key_id

	A domain_name representing the name of a shared key, to be used for transaction security.

	key_list

	A list of one or more key_id, separated by semicolons and ending with a semicolon.

	number

	A non-negative 32-bit integer (i.e., a number between 0 and 4294967295, inclusive). Its acceptable value might be further limited by the context in which it is used.

	fixedpoint

	A non-negative real number that can be specified to the nearest one-hundredth. Up to five digits can be specified before a decimal point, and up to two digits after, so the maximum value is 99999.99. Acceptable values might be further limited by the contexts in which they are used.

	path_name

	A quoted string which is used as a pathname, such as zones/master/my.test.domain.

	port_list

	A list of an ip_port or a port range. A port range is specified in the form of range followed by two ip_port``s, ``port_low and port_high, which represents port numbers from port_low through port_high, inclusive. port_low must not be larger than port_high. For example, range 1024 65535 represents ports from 1024 through 65535. In either case an asterisk (*) character is not allowed as a valid ip_port.

	size_spec

	A 64-bit unsigned integer, or the keywords unlimited or default. Integers may take values 0 <= value <= 18446744073709551615, though certain parameters (such as max-journal-size) may use a more limited range within these extremes. In most cases, setting a value to 0 does not literally mean zero; it means “undefined” or “as big as possible,” depending on the context. See the explanations of particular parameters that use size_spec for details on how they interpret its use. Numeric values can optionally be followed by a scaling factor: K or k for kilobytes, M or m for megabytes, and G or g for gigabytes, which scale by 1024, 1024*1024, and 1024*1024*1024 respectively.
unlimited generally means “as big as possible,” and is usually the best way to safely set a very large number.
default uses the limit that was in force when the server was started.

	size_or_percent

	A size_spec or integer value followed by % to represent percent. The behavior is exactly the same as size_spec, but size_or_percent also allows specifying a positive integer value followed by the % sign to represent percent.

	yes_or_no

	Either yes or no. The words true and false are also accepted, as are the numbers 1 and 0.

	dialup_option

	One of yes, no, notify, notify-passive, refresh, or passive. When used in a zone, notify-passive, refresh, and passive are restricted to secondary and stub zones.

4.1.1. Address Match Lists

4.1.1.1. Syntax

address_match_list = address_match_list_element ; ...

address_match_list_element = [!] (ip_address | ip_prefix |
 key key_id | acl_name | { address_match_list })

4.1.1.2. Definition and Usage

Address match lists are primarily used to determine access control for
various server operations. They are also used in the listen-on and
sortlist statements. The elements which constitute an address match
list can be any of the following:

	an IP address (IPv4 or IPv6)

	an IP prefix (in / notation)

	a key ID, as defined by the key statement

	the name of an address match list defined with the acl statement

	a nested address match list enclosed in braces

Elements can be negated with a leading exclamation mark (!), and the
match list names “any”, “none”, “localhost”, and “localnets” are
predefined. More information on those names can be found in the
description of the acl statement.

The addition of the key clause made the name of this syntactic element
something of a misnomer, since security keys can be used to validate
access without regard to a host or network address. Nonetheless, the
term “address match list” is still used throughout the documentation.

When a given IP address or prefix is compared to an address match list,
the comparison takes place in approximately O(1) time. However, key
comparisons require that the list of keys be traversed until a matching
key is found, and therefore may be somewhat slower.

The interpretation of a match depends on whether the list is being used
for access control, defining listen-on ports, or in a sortlist,
and whether the element was negated.

When used as an access control list, a non-negated match allows access
and a negated match denies access. If there is no match, access is
denied. The clauses allow-notify, allow-recursion,
allow-recursion-on, allow-query, allow-query-on,
allow-query-cache, allow-query-cache-on, allow-transfer,
allow-update, allow-update-forwarding, blackhole, and
keep-response-order all use address match lists. Similarly, the
listen-on option causes the server to refuse queries on any of
the machine’s addresses which do not match the list.

Order of insertion is significant. If more than one element in an ACL is
found to match a given IP address or prefix, preference is given to
the one that came first in the ACL definition. Because of this
first-match behavior, an element that defines a subset of another
element in the list should come before the broader element, regardless
of whether either is negated. For example, in 1.2.3/24; ! 1.2.3.13;
the 1.2.3.13 element is completely useless because the algorithm
matches any lookup for 1.2.3.13 to the 1.2.3/24 element. Using
! 1.2.3.13; 1.2.3/24 fixes that problem by blocking 1.2.3.13
via the negation, but all other 1.2.3.* hosts pass through.

4.1.2. Comment Syntax

The BIND 9 comment syntax allows comments to appear anywhere that
whitespace may appear in a BIND configuration file. To appeal to
programmers of all kinds, they can be written in the C, C++, or
shell/perl style.

4.1.2.1. Syntax

/* This is a BIND comment as in C */

// This is a BIND comment as in C++

This is a BIND comment as in common Unix shells
and perl

4.1.2.2. Definition and Usage

Comments may appear anywhere that whitespace may appear in a BIND
configuration file.

C-style comments start with the two characters /* (slash, star) and end
with */ (star, slash). Because they are completely delimited with these
characters, they can be used to comment only a portion of a line or to
span multiple lines.

C-style comments cannot be nested. For example, the following is not
valid because the entire comment ends with the first */:

/* This is the start of a comment.
 This is still part of the comment.
/* This is an incorrect attempt at nesting a comment. */
 This is no longer in any comment. */

C++-style comments start with the two characters // (slash, slash) and
continue to the end of the physical line. They cannot be continued
across multiple physical lines; to have one logical comment span
multiple lines, each line must use the // pair. For example:

// This is the start of a comment. The next line
// is a new comment, even though it is logically
// part of the previous comment.

Shell-style (or perl-style) comments start with the
character # (number sign) and continue to the end of the physical
line, as in C++ comments. For example:

This is the start of a comment. The next line
is a new comment, even though it is logically
part of the previous comment.

Warning

The semicolon (;) character cannot start a comment, unlike
in a zone file. The semicolon indicates the end of a
configuration statement.

4.2. Configuration File Grammar

A BIND 9 configuration consists of statements and comments. Statements
end with a semicolon; statements and comments are the only elements that
can appear without enclosing braces. Many statements contain a block of
sub-statements, which are also terminated with a semicolon.

The following statements are supported:

	acl

	Defines a named IP address matching list, for access control and other uses.

	controls

	Declares control channels to be used by the rndc utility.

	dnssec-policy

	Describes a DNSSEC key and signing policy for zones. See dnssec-policy Grammar for details.

	include

	Includes a file.

	key

	Specifies key information for use in authentication and authorization using TSIG.

	logging

	Specifies what information the server logs and where the log messages are sent.

	masters

	Synonym for primaries.

	options

	Controls global server configuration options and sets defaults for other statements.

	primaries

	Defines a named list of servers for inclusion in stub and secondary zones’ primaries or also-notify lists. (Note: this is a synonym for the original keyword masters, which can still be used, but is no longer the preferred terminology.)

	server

	Sets certain configuration options on a per-server basis.

	statistics-channels

	Declares communication channels to get access to named statistics.

	trust-anchors

	Defines DNSSEC trust anchors: if used with the initial-key or initial-ds keyword, trust anchors are kept up-to-date using RFC 5011 [https://tools.ietf.org/html/rfc5011.html] trust anchor maintenance; if used with static-key or static-ds, keys are permanent.

	managed-keys

	Is identical to trust-anchors; this option is deprecated in favor of trust-anchors with the initial-key keyword, and may be removed in a future release.

	trusted-keys

	Defines permanent trusted DNSSEC keys; this option is deprecated in favor of trust-anchors with the static-key keyword, and may be removed in a future release.

	view

	Defines a view.

	zone

	Defines a zone.

The logging and options statements may only occur once per
configuration.

4.2.1. acl Statement Grammar

acl <string> { <address_match_element>; ... };

4.2.2. acl Statement Definition and Usage

The acl statement assigns a symbolic name to an address match list.
It gets its name from one of the primary uses of address match lists: Access
Control Lists (ACLs).

The following ACLs are built-in:

	any

	Matches all hosts.

	none

	Matches no hosts.

	localhost

	Matches the IPv4 and IPv6 addresses of all network interfaces on the system. When addresses are added or removed, the localhost ACL element is updated to reflect the changes.

	localnets

	Matches any host on an IPv4 or IPv6 network for which the system has an interface. When addresses are added or removed, the localnets ACL element is updated to reflect the changes. Some systems do not provide a way to determine the prefix lengths of local IPv6 addresses; in such cases, localnets only matches the local IPv6 addresses, just like localhost.

4.2.3. controls Statement Grammar

controls {
 inet (<ipv4_address> | <ipv6_address> |
 *) [port (<integer> | *)] allow
 { <address_match_element>; ... } [
 keys { <string>; ... }] [read-only
 <boolean>];
 unix <quoted_string> perm <integer>
 owner <integer> group <integer> [
 keys { <string>; ... }] [read-only
 <boolean>];
};

4.2.4. controls Statement Definition and Usage

The controls statement declares control channels to be used by
system administrators to manage the operation of the name server. These
control channels are used by the rndc utility to send commands to
and retrieve non-DNS results from a name server.

An inet control channel is a TCP socket listening at the specified
ip_port on the specified ip_addr, which can be an IPv4 or IPv6
address. An ip_addr of * (asterisk) is interpreted as the IPv4
wildcard address; connections are accepted on any of the system’s
IPv4 addresses. To listen on the IPv6 wildcard address, use an
ip_addr of ::. If rndc is only used on the local host,
using the loopback address (127.0.0.1 or ::1) is recommended for
maximum security.

If no port is specified, port 953 is used. The asterisk * cannot
be used for ip_port.

The ability to issue commands over the control channel is restricted by
the allow and keys clauses. Connections to the control channel
are permitted based on the address_match_list. This is for simple IP
address-based filtering only; any key_id elements of the
address_match_list are ignored.

A unix control channel is a Unix domain socket listening at the
specified path in the file system. Access to the socket is specified by
the perm, owner, and group clauses. Note that on some platforms
(SunOS and Solaris), the permissions (perm) are applied to the parent
directory as the permissions on the socket itself are ignored.

The primary authorization mechanism of the command channel is the
key_list, which contains a list of key_id``s. Each ``key_id in
the key_list is authorized to execute commands over the control
channel. See Administrative Tools for information about
configuring keys in rndc.

If the read-only clause is enabled, the control channel is limited
to the following set of read-only commands: nta -dump, null,
status, showzone, testgen, and zonestatus. By default,
read-only is not enabled and the control channel allows read-write
access.

If no controls statement is present, named sets up a default
control channel listening on the loopback address 127.0.0.1 and its IPv6
counterpart, ::1. In this case, and also when the controls statement
is present but does not have a keys clause, named attempts
to load the command channel key from the file rndc.key in /etc
(or whatever sysconfdir was specified when BIND was built). To
create an rndc.key file, run rndc-confgen -a.

To disable the command channel, use an empty controls statement:
controls { };.

4.2.5. include Statement Grammar

include filename;

4.2.6. include Statement Definition and Usage

The include statement inserts the specified file (or files if a valid glob
expression is detected) at the point where the include statement is
encountered. The include statement facilitates the administration of
configuration files by permitting the reading or writing of some things but not
others. For example, the statement could include private keys that are readable
only by the name server.

4.2.7. key Statement Grammar

key <string> {
 algorithm <string>;
 secret <string>;
};

4.2.8. key Statement Definition and Usage

The key statement defines a shared secret key for use with TSIG (see
TSIG) or the command channel (see controls Statement Definition and Usage).

The key statement can occur at the top level of the configuration
file or inside a view statement. Keys defined in top-level key
statements can be used in all views. Keys intended for use in a
controls statement (see controls Statement Definition and Usage)
must be defined at the top level.

The key_id, also known as the key name, is a domain name that uniquely
identifies the key. It can be used in a server statement to cause
requests sent to that server to be signed with this key, or in address
match lists to verify that incoming requests have been signed with a key
matching this name, algorithm, and secret.

The algorithm_id is a string that specifies a security/authentication
algorithm. The named server supports hmac-md5, hmac-sha1,
hmac-sha224, hmac-sha256, hmac-sha384, and hmac-sha512
TSIG authentication. Truncated hashes are supported by appending the
minimum number of required bits preceded by a dash, e.g.,
hmac-sha1-80. The secret_string is the secret to be used by the
algorithm, and is treated as a Base64-encoded string.

4.2.9. logging Statement Grammar

logging {
 category <string> { <string>; ... };
 channel <string> {
 buffered <boolean>;
 file <quoted_string> [versions (unlimited | <integer>)]
 [size <size>] [suffix (increment | timestamp)];
 null;
 print-category <boolean>;
 print-severity <boolean>;
 print-time (iso8601 | iso8601-utc | local | <boolean>);
 severity <log_severity>;
 stderr;
 syslog [<syslog_facility>];
 };
};

4.2.10. logging Statement Definition and Usage

The logging statement configures a wide variety of logging options
for the name server. Its channel phrase associates output methods,
format options, and severity levels with a name that can then be used
with the category phrase to select how various classes of messages
are logged.

Only one logging statement is used to define as many channels and
categories as desired. If there is no logging statement, the
logging configuration is:

logging {
 category default { default_syslog; default_debug; };
 category unmatched { null; };
};

If named is started with the -L option, it logs to the specified
file at startup, instead of using syslog. In this case the logging
configuration is:

logging {
 category default { default_logfile; default_debug; };
 category unmatched { null; };
};

The logging configuration is only established when the entire
configuration file has been parsed. When the server starts up, all
logging messages regarding syntax errors in the configuration file go to
the default channels, or to standard error if the -g option was
specified.

4.2.10.1. The channel Phrase

All log output goes to one or more channels; there is no limit to
the number of channels that can be created.

Every channel definition must include a destination clause that says
whether messages selected for the channel go to a file, go to a particular
syslog facility, go to the standard error stream, or are discarded. The definition can
optionally also limit the message severity level that is accepted
by the channel (the default is info), and whether to include a
named-generated time stamp, the category name, and/or the severity level
(the default is not to include any).

The null destination clause causes all messages sent to the channel
to be discarded; in that case, other options for the channel are
meaningless.

The file destination clause directs the channel to a disk file. It
can include additional arguments to specify how large the file is
allowed to become before it is rolled to a backup file (size), how
many backup versions of the file are saved each time this happens
(versions), and the format to use for naming backup versions
(suffix).

The size option is used to limit log file growth. If the file ever
exceeds the specified size, then named stops writing to the file
unless it has a versions option associated with it. If backup
versions are kept, the files are rolled as described below. If there is
no versions option, no more data is written to the log until
some out-of-band mechanism removes or truncates the log to less than the
maximum size. The default behavior is not to limit the size of the file.

File rolling only occurs when the file exceeds the size specified with
the size option. No backup versions are kept by default; any
existing log file is simply appended. The versions option specifies
how many backup versions of the file should be kept. If set to
unlimited, there is no limit.

The suffix option can be set to either increment or
timestamp. If set to timestamp, then when a log file is rolled,
it is saved with the current timestamp as a file suffix. If set to
increment, then backup files are saved with incrementing numbers as
suffixes; older files are renamed when rolling. For example, if
versions is set to 3 and suffix to increment, then when
filename.log reaches the size specified by size,
filename.log.1 is renamed to filename.log.2, filename.log.0
is renamed to filename.log.1, and filename.log is renamed to
filename.log.0, whereupon a new filename.log is opened.

Here is an example using the size, versions, and suffix options:

channel an_example_channel {
 file "example.log" versions 3 size 20m suffix increment;
 print-time yes;
 print-category yes;
};

The syslog destination clause directs the channel to the system log.
Its argument is a syslog facility as described in the syslog man
page. Known facilities are kern, user, mail, daemon,
auth, syslog, lpr, news, uucp, cron,
authpriv, ftp, local0, local1, local2, local3,
local4, local5, local6, and local7; however, not all
facilities are supported on all operating systems. How syslog
handles messages sent to this facility is described in the
syslog.conf man page. On a system which uses a very old
version of syslog, which only uses two arguments to the openlog()
function, this clause is silently ignored.

On Windows machines, syslog messages are directed to the EventViewer.

The severity clause works like syslog’s “priorities,” except
that they can also be used when writing straight to a file rather
than using syslog. Messages which are not at least of the severity
level given are not selected for the channel; messages of higher
severity levels are accepted.

When using syslog, the syslog.conf priorities
also determine what eventually passes through. For example, defining a
channel facility and severity as daemon and debug, but only
logging daemon.warning via syslog.conf, causes messages of
severity info and notice to be dropped. If the situation were
reversed, with named writing messages of only warning or higher,
then syslogd would print all messages it received from the channel.

The stderr destination clause directs the channel to the server’s
standard error stream. This is intended for use when the server is
running as a foreground process, as when debugging a
configuration, for example.

The server can supply extensive debugging information when it is in
debugging mode. If the server’s global debug level is greater than zero,
debugging mode is active. The global debug level is set either
by starting the named server with the -d flag followed by a
positive integer, or by running rndc trace. The global debug level
can be set to zero, and debugging mode turned off, by running rndc
notrace. All debugging messages in the server have a debug level;
higher debug levels give more detailed output. Channels that specify a
specific debug severity, for example:

channel specific_debug_level {
 file "foo";
 severity debug 3;
};

get debugging output of level 3 or less any time the server is in
debugging mode, regardless of the global debugging level. Channels with
dynamic severity use the server’s global debug level to determine
what messages to print.

print-time can be set to yes, no, or a time format
specifier, which may be one of local, iso8601, or
iso8601-utc. If set to no, the date and time are not
logged. If set to yes or local, the date and time are logged in
a human-readable format, using the local time zone. If set to
iso8601, the local time is logged in ISO 8601 format. If set to
iso8601-utc, the date and time are logged in ISO 8601 format,
with time zone set to UTC. The default is no.

print-time may be specified for a syslog channel, but it is
usually pointless since syslog also logs the date and time.

If print-category is requested, then the category of the message
is logged as well. Finally, if print-severity is on, then the
severity level of the message is logged. The print- options may
be used in any combination, and are always printed in the following
order: time, category, severity. Here is an example where all three
print- options are on:

28-Feb-2000 15:05:32.863 general: notice: running

If buffered has been turned on, the output to files is not
flushed after each log entry. By default all log messages are flushed.

There are four predefined channels that are used for named’s default
logging, as follows. If named is started with the -L option, then a fifth
channel, default_logfile, is added. How they are used is described in
The category Phrase.

channel default_syslog {
 // send to syslog's daemon facility
 syslog daemon;
 // only send priority info and higher
 severity info;
};

channel default_debug {
 // write to named.run in the working directory
 // Note: stderr is used instead of "named.run" if
 // the server is started with the '-g' option.
 file "named.run";
 // log at the server's current debug level
 severity dynamic;
};

channel default_stderr {
 // writes to stderr
 stderr;
 // only send priority info and higher
 severity info;
};

channel null {
 // toss anything sent to this channel
 null;
};

channel default_logfile {
 // this channel is only present if named is
 // started with the -L option, whose argument
 // provides the file name
 file "...";
 // log at the server's current debug level
 severity dynamic;
};

The default_debug channel has the special property that it only
produces output when the server’s debug level is non-zero. It normally
writes to a file called named.run in the server’s working directory.

For security reasons, when the -u command-line option is used, the
named.run file is created only after named has changed to the
new UID, and any debug output generated while named is starting -
and still running as root - is discarded. To capture this
output, run the server with the -L option to specify a
default logfile, or the -g option to log to standard error which can
be redirected to a file.

Once a channel is defined, it cannot be redefined. The
built-in channels cannot be altered directly, but the default logging
can be modified by pointing categories at defined channels.

4.2.10.2. The category Phrase

There are many categories, so desired logs can be sent anywhere
while unwanted logs are ignored. If
a list of channels is not specified for a category, log messages in that
category are sent to the default category instead. If no
default category is specified, the following “default default” is used:

category default { default_syslog; default_debug; };

If named is started with the -L option, the default category
is:

category default { default_logfile; default_debug; };

As an example, let’s say a user wants to log security events to a file, but
also wants to keep the default logging behavior. They would specify the
following:

channel my_security_channel {
 file "my_security_file";
 severity info;
};
category security {
 my_security_channel;
 default_syslog;
 default_debug;
};

To discard all messages in a category, specify the null channel:

category xfer-out { null; };
category notify { null; };

The following are the available categories and brief descriptions of the
types of log information they contain. More categories may be added in
future BIND releases.

	client

	Processing of client requests.

	cname

	Name servers that are skipped for being a CNAME rather than A/AAAA records.

	config

	Configuration file parsing and processing.

	database

	Messages relating to the databases used internally by the name server to store zone and cache data.

	default

	Logging options for those categories where no specific configuration has been defined.

	delegation-only

	Queries that have been forced to NXDOMAIN as the result of a delegation-only zone or a delegation-only in a forward, hint, or stub zone declaration.

	dispatch

	Dispatching of incoming packets to the server modules where they are to be processed.

	dnssec

	DNSSEC and TSIG protocol processing.

	dnstap

	The “dnstap” DNS traffic capture system.

	edns-disabled

	Log queries that have been forced to use plain DNS due to timeouts. This is often due to the remote servers not being RFC 1034 [https://tools.ietf.org/html/rfc1034.html]-compliant (not always returning FORMERR or similar to EDNS queries and other extensions to the DNS when they are not understood). In other words, this is targeted at servers that fail to respond to DNS queries that they don’t understand.

Note: the log message can also be due to packet loss. Before reporting servers for non-RFC 1034 [https://tools.ietf.org/html/rfc1034.html] compliance they should be re-tested to determine the nature of the non-compliance. This testing should prevent or reduce the number of false-positive reports.

Note: eventually named will have to stop treating such timeouts as due to RFC 1034 [https://tools.ietf.org/html/rfc1034.html] non-compliance and start treating it as plain packet loss. Falsely classifying packet loss as due to RFC 1034 [https://tools.ietf.org/html/rfc1034.html] non-compliance impacts DNSSEC validation, which requires EDNS for the DNSSEC records to be returned.

	general

	Catch-all for many things that still are not classified into categories.

	lame-servers

	Misconfigurations in remote servers, discovered by BIND 9 when trying to query those servers during resolution.

	network

	Network operations.

	notify

	The NOTIFY protocol.

	nsid

	NSID options received from upstream servers.

	queries

	Location where queries should be logged.

At startup, specifying the category queries also enables query logging unless the querylog option has been specified.

The query log entry first reports a client object identifier in @0x<hexadecimal-number> format. Next, it reports the client’s IP address and port number, and the query name, class, and type. Next, it reports whether the Recursion Desired flag was set (+ if set, - if not set), whether the query was signed (S), whether EDNS was in use along with the EDNS version number (E(#)), whether TCP was used (T), whether DO (DNSSEC Ok) was set (D), whether CD (Checking Disabled) was set (C), whether a valid DNS Server COOKIE was received (V), and whether a DNS COOKIE option without a valid Server COOKIE was present (K). After this, the destination address the query was sent to is reported. Finally, if any CLIENT-SUBNET option was present in the client query, it is included in square brackets in the format [ECS address/source/scope].

client 127.0.0.1#62536 (www.example.com):
query: www.example.com IN AAAA +SE
client ::1#62537 (www.example.net):
query: www.example.net IN AAAA -SE

The first part of this log message, showing the client address/port number and query name, is repeated in all subsequent log messages related to the same query.

	query-errors

	Information about queries that resulted in some failure.

	rate-limit

	Start, periodic, and final notices of the rate limiting of a stream of responses that are logged at info severity in this category. These messages include a hash value of the domain name of the response and the name itself, except when there is insufficient memory to record the name for the final notice. The final notice is normally delayed until about one minute after rate limiting stops. A lack of memory can hurry the final notice, which is indicated by an initial asterisk (*). Various internal events are logged at debug level 1 and higher.

Rate limiting of individual requests is logged in the query-errors category.

	resolver

	DNS resolution, such as the recursive lookups performed on behalf of clients by a caching name server.

	rpz

	Information about errors in response policy zone files, rewritten responses, and, at the highest debug levels, mere rewriting attempts.

	rpz-passthru

	Information about RPZ PASSTHRU policy activity. This category allows pre-approved policy activity to be logged into a dedicated channel.

	security

	Approval and denial of requests.

	serve-stale

	Indication of whether a stale answer is used following a resolver failure.

	spill

	Queries that have been terminated, either by dropping or responding with SERVFAIL, as a result of a fetchlimit quota being exceeded.

	trust-anchor-telemetry

	Trust-anchor-telemetry requests received by named.

	unmatched

	Messages that named was unable to determine the class of, or for which there was no matching view. A one-line summary is also logged to the client category. This category is best sent to a file or stderr; by default it is sent to the null channel.

	update

	Dynamic updates.

	update-security

	Approval and denial of update requests.

	xfer-in

	Zone transfers the server is receiving.

	xfer-out

	Zone transfers the server is sending.

	zoneload

	Loading of zones and creation of automatic empty zones.

4.2.10.3. The query-errors Category

The query-errors category is used to indicate why and how specific queries
resulted in responses which indicate an error. Normally, these messages are
logged at debug logging levels; note, however, that if query logging is
active, some are logged at info. The logging levels are described below:

At debug level 1 or higher - or at info when query logging is
active - each response with the rcode of SERVFAIL is logged as follows:

client 127.0.0.1#61502: query failed (SERVFAIL) for www.example.com/IN/AAAA at query.c:3880

This means an error resulting in SERVFAIL was detected at line 3880 of source
file query.c. Log messages of this level are particularly helpful in identifying
the cause of SERVFAIL for an authoritative server.

At debug level 2 or higher, detailed context information about recursive
resolutions that resulted in SERVFAIL is logged. The log message looks
like this:

fetch completed at resolver.c:2970 for www.example.com/A
in 10.000183: timed out/success [domain:example.com,
referral:2,restart:7,qrysent:8,timeout:5,lame:0,quota:0,neterr:0,
badresp:1,adberr:0,findfail:0,valfail:0]

The first part before the colon shows that a recursive resolution for
AAAA records of www.example.com completed in 10.000183 seconds, and the
final result that led to the SERVFAIL was determined at line 2970 of
source file resolver.c.

The next part shows the detected final result and the latest result of
DNSSEC validation. The latter is always “success” when no validation attempt
was made. In this example, this query probably resulted in SERVFAIL because all
name servers are down or unreachable, leading to a timeout in 10 seconds.
DNSSEC validation was probably not attempted.

The last part, enclosed in square brackets, shows statistics collected for this
particular resolution attempt. The domain field shows the deepest zone that
the resolver reached; it is the zone where the error was finally detected. The
meaning of the other fields is summarized in the following list.

	referral

	The number of referrals the resolver received throughout the resolution process. In the above example.com there are two.

	restart

	The number of cycles that the resolver tried remote servers at the domain zone. In each cycle, the resolver sends one query (possibly resending it, depending on the response) to each known name server of the domain zone.

	qrysent

	The number of queries the resolver sent at the domain zone.

	timeout

	The number of timeouts the resolver received since the last response.

	lame

	The number of lame servers the resolver detected at the domain zone. A server is detected to be lame either by an invalid response or as a result of lookup in BIND 9’s address database (ADB), where lame servers are cached.

	quota

	The number of times the resolver was unable to send a query because it had exceeded the permissible fetch quota for a server.

	neterr

	The number of erroneous results that the resolver encountered in sending queries at the domain zone. One common case is when the remote server is unreachable and the resolver receives an “ICMP unreachable” error message.

	badresp

	The number of unexpected responses (other than lame) to queries sent by the resolver at the domain zone.

	adberr

	Failures in finding remote server addresses of the``domain`` zone in the ADB. One common case of this is that the remote server’s name does not have any address records.

	findfail

	Failures to resolve remote server addresses. This is a total number of failures throughout the resolution process.

	valfail

	Failures of DNSSEC validation. Validation failures are counted throughout the resolution process (not limited to the domain zone), but should only happen in domain.

At debug level 3 or higher, the same messages as those at
debug level 1 are logged for errors other than
SERVFAIL. Note that negative responses such as NXDOMAIN are not errors, and are
not logged at this debug level.

At debug level 4 or higher, the detailed context information logged at
debug level 2 is logged for errors other than SERVFAIL and for negative
responses such as NXDOMAIN.

4.2.11. primaries Statement Grammar

primaries <string> [port <integer>] [dscp
 <integer>] { (<primaries> | <ipv4_address>
 [port <integer>] | <ipv6_address> [port
 <integer>]) [key <string>]; ... };

4.2.12. primaries Statement Definition and Usage

primaries lists allow for a common set of primary servers to be easily
used by multiple stub and secondary zones in their primaries or
also-notify lists. (Note: primaries is a synonym for the original
keyword masters, which can still be used, but is no longer the
preferred terminology.)

4.2.13. options Statement Grammar

This is the grammar of the options statement in the named.conf
file:

options {
 allow-new-zones <boolean>;
 allow-notify { <address_match_element>; ... };
 allow-query { <address_match_element>; ... };
 allow-query-cache { <address_match_element>; ... };
 allow-query-cache-on { <address_match_element>; ... };
 allow-query-on { <address_match_element>; ... };
 allow-recursion { <address_match_element>; ... };
 allow-recursion-on { <address_match_element>; ... };
 allow-transfer { <address_match_element>; ... };
 allow-update { <address_match_element>; ... };
 allow-update-forwarding { <address_match_element>; ... };
 also-notify [port <integer>] [dscp <integer>] { (<primaries> |
 <ipv4_address> [port <integer>] | <ipv6_address> [port
 <integer>]) [key <string>]; ... };
 alt-transfer-source (<ipv4_address> | *) [port (<integer> | *)
] [dscp <integer>];
 alt-transfer-source-v6 (<ipv6_address> | *) [port (<integer> |
 *)] [dscp <integer>];
 answer-cookie <boolean>;
 attach-cache <string>;
 auth-nxdomain <boolean>; // default changed
 auto-dnssec (allow | maintain | off);
 automatic-interface-scan <boolean>;
 avoid-v4-udp-ports { <portrange>; ... };
 avoid-v6-udp-ports { <portrange>; ... };
 bindkeys-file <quoted_string>;
 blackhole { <address_match_element>; ... };
 cache-file <quoted_string>;
 catalog-zones { zone <string> [default-masters [port <integer>]
 [dscp <integer>] { (<primaries> | <ipv4_address> [port
 <integer>] | <ipv6_address> [port <integer>]) [key
 <string>]; ... }] [zone-directory <quoted_string>] [
 in-memory <boolean>] [min-update-interval <duration>]; ... };
 check-dup-records (fail | warn | ignore);
 check-integrity <boolean>;
 check-mx (fail | warn | ignore);
 check-mx-cname (fail | warn | ignore);
 check-names (primary | master |
 secondary | slave | response) (
 fail | warn | ignore);
 check-sibling <boolean>;
 check-spf (warn | ignore);
 check-srv-cname (fail | warn | ignore);
 check-wildcard <boolean>;
 clients-per-query <integer>;
 cookie-algorithm (aes | siphash24);
 cookie-secret <string>;
 coresize (default | unlimited | <sizeval>);
 datasize (default | unlimited | <sizeval>);
 deny-answer-addresses { <address_match_element>; ... } [
 except-from { <string>; ... }];
 deny-answer-aliases { <string>; ... } [except-from { <string>; ...
 }];
 dialup (notify | notify-passive | passive | refresh | <boolean>);
 directory <quoted_string>;
 disable-algorithms <string> { <string>;
 ... };
 disable-ds-digests <string> { <string>;
 ... };
 disable-empty-zone <string>;
 dns64 <netprefix> {
 break-dnssec <boolean>;
 clients { <address_match_element>; ... };
 exclude { <address_match_element>; ... };
 mapped { <address_match_element>; ... };
 recursive-only <boolean>;
 suffix <ipv6_address>;
 };
 dns64-contact <string>;
 dns64-server <string>;
 dnskey-sig-validity <integer>;
 dnsrps-enable <boolean>;
 dnsrps-options { <unspecified-text> };
 dnssec-accept-expired <boolean>;
 dnssec-dnskey-kskonly <boolean>;
 dnssec-loadkeys-interval <integer>;
 dnssec-must-be-secure <string> <boolean>;
 dnssec-policy <string>;
 dnssec-secure-to-insecure <boolean>;
 dnssec-update-mode (maintain | no-resign);
 dnssec-validation (yes | no | auto);
 dnstap { (all | auth | client | forwarder | resolver | update) [
 (query | response)]; ... };
 dnstap-identity (<quoted_string> | none | hostname);
 dnstap-output (file | unix) <quoted_string> [size (unlimited |
 <size>)] [versions (unlimited | <integer>)] [suffix (
 increment | timestamp)];
 dnstap-version (<quoted_string> | none);
 dscp <integer>;
 dual-stack-servers [port <integer>] { (<quoted_string> [port
 <integer>] [dscp <integer>] | <ipv4_address> [port
 <integer>] [dscp <integer>] | <ipv6_address> [port
 <integer>] [dscp <integer>]); ... };
 dump-file <quoted_string>;
 edns-udp-size <integer>;
 empty-contact <string>;
 empty-server <string>;
 empty-zones-enable <boolean>;
 fetch-quota-params <integer> <fixedpoint> <fixedpoint> <fixedpoint>;
 fetches-per-server <integer> [(drop | fail)];
 fetches-per-zone <integer> [(drop | fail)];
 files (default | unlimited | <sizeval>);
 flush-zones-on-shutdown <boolean>;
 forward (first | only);
 forwarders [port <integer>] [dscp <integer>] { (<ipv4_address>
 | <ipv6_address>) [port <integer>] [dscp <integer>]; ... };
 fstrm-set-buffer-hint <integer>;
 fstrm-set-flush-timeout <integer>;
 fstrm-set-input-queue-size <integer>;
 fstrm-set-output-notify-threshold <integer>;
 fstrm-set-output-queue-model (mpsc | spsc);
 fstrm-set-output-queue-size <integer>;
 fstrm-set-reopen-interval <duration>;
 geoip-directory (<quoted_string> | none);
 glue-cache <boolean>;
 heartbeat-interval <integer>;
 hostname (<quoted_string> | none);
 inline-signing <boolean>;
 interface-interval <duration>;
 ixfr-from-differences (primary | master | secondary | slave |
 <boolean>);
 keep-response-order { <address_match_element>; ... };
 key-directory <quoted_string>;
 lame-ttl <duration>;
 listen-on [port <integer>] [dscp
 <integer>] {
 <address_match_element>; ... };
 listen-on-v6 [port <integer>] [dscp
 <integer>] {
 <address_match_element>; ... };
 lmdb-mapsize <sizeval>;
 lock-file (<quoted_string> | none);
 managed-keys-directory <quoted_string>;
 masterfile-format (map | raw | text);
 masterfile-style (full | relative);
 match-mapped-addresses <boolean>;
 max-cache-size (default | unlimited | <sizeval> | <percentage>);
 max-cache-ttl <duration>;
 max-clients-per-query <integer>;
 max-ixfr-ratio (unlimited | <percentage>);
 max-journal-size (default | unlimited | <sizeval>);
 max-ncache-ttl <duration>;
 max-records <integer>;
 max-recursion-depth <integer>;
 max-recursion-queries <integer>;
 max-refresh-time <integer>;
 max-retry-time <integer>;
 max-rsa-exponent-size <integer>;
 max-stale-ttl <duration>;
 max-transfer-idle-in <integer>;
 max-transfer-idle-out <integer>;
 max-transfer-time-in <integer>;
 max-transfer-time-out <integer>;
 max-udp-size <integer>;
 max-zone-ttl (unlimited | <duration>);
 memstatistics <boolean>;
 memstatistics-file <quoted_string>;
 message-compression <boolean>;
 min-cache-ttl <duration>;
 min-ncache-ttl <duration>;
 min-refresh-time <integer>;
 min-retry-time <integer>;
 minimal-any <boolean>;
 minimal-responses (no-auth | no-auth-recursive | <boolean>);
 multi-master <boolean>;
 new-zones-directory <quoted_string>;
 no-case-compress { <address_match_element>; ... };
 nocookie-udp-size <integer>;
 notify (explicit | master-only | primary-only | <boolean>);
 notify-delay <integer>;
 notify-rate <integer>;
 notify-source (<ipv4_address> | *) [port (<integer> | *)] [
 dscp <integer>];
 notify-source-v6 (<ipv6_address> | *) [port (<integer> | *)]
 [dscp <integer>];
 notify-to-soa <boolean>;
 nta-lifetime <duration>;
 nta-recheck <duration>;
 nxdomain-redirect <string>;
 pid-file (<quoted_string> | none);
 port <integer>;
 preferred-glue <string>;
 prefetch <integer> [<integer>];
 provide-ixfr <boolean>;
 qname-minimization (strict | relaxed | disabled | off);
 query-source (([address] (<ipv4_address> | *) [port (
 <integer> | *)]) | ([[address] (<ipv4_address> | *)]
 port (<integer> | *))) [dscp <integer>];
 query-source-v6 (([address] (<ipv6_address> | *) [port (
 <integer> | *)]) | ([[address] (<ipv6_address> | *)]
 port (<integer> | *))) [dscp <integer>];
 querylog <boolean>;
 random-device (<quoted_string> | none);
 rate-limit {
 all-per-second <integer>;
 errors-per-second <integer>;
 exempt-clients { <address_match_element>; ... };
 ipv4-prefix-length <integer>;
 ipv6-prefix-length <integer>;
 log-only <boolean>;
 max-table-size <integer>;
 min-table-size <integer>;
 nodata-per-second <integer>;
 nxdomains-per-second <integer>;
 qps-scale <integer>;
 referrals-per-second <integer>;
 responses-per-second <integer>;
 slip <integer>;
 window <integer>;
 };
 recursing-file <quoted_string>;
 recursion <boolean>;
 recursive-clients <integer>;
 request-expire <boolean>;
 request-ixfr <boolean>;
 request-nsid <boolean>;
 require-server-cookie <boolean>;
 reserved-sockets <integer>;
 resolver-nonbackoff-tries <integer>;
 resolver-query-timeout <integer>;
 resolver-retry-interval <integer>;
 response-padding { <address_match_element>; ... } block-size
 <integer>;
 response-policy { zone <string> [add-soa <boolean>] [log
 <boolean>] [max-policy-ttl <duration>] [min-update-interval
 <duration>] [policy (cname | disabled | drop | given | no-op
 | nodata | nxdomain | passthru | tcp-only <quoted_string>)] [
 recursive-only <boolean>] [nsip-enable <boolean>] [
 nsdname-enable <boolean>]; ... } [add-soa <boolean>] [
 break-dnssec <boolean>] [max-policy-ttl <duration>] [
 min-update-interval <duration>] [min-ns-dots <integer>] [
 nsip-wait-recurse <boolean>] [nsdname-wait-recurse <boolean>
] [qname-wait-recurse <boolean>] [recursive-only <boolean>]
 [nsip-enable <boolean>] [nsdname-enable <boolean>] [
 dnsrps-enable <boolean>] [dnsrps-options { <unspecified-text>
 }];
 root-delegation-only [exclude { <string>; ... }];
 root-key-sentinel <boolean>;
 rrset-order { [class <string>] [type <string>] [name
 <quoted_string>] <string> <string>; ... };
 secroots-file <quoted_string>;
 send-cookie <boolean>;
 serial-query-rate <integer>;
 serial-update-method (date | increment | unixtime);
 server-id (<quoted_string> | none | hostname);
 servfail-ttl <duration>;
 session-keyalg <string>;
 session-keyfile (<quoted_string> | none);
 session-keyname <string>;
 sig-signing-nodes <integer>;
 sig-signing-signatures <integer>;
 sig-signing-type <integer>;
 sig-validity-interval <integer> [<integer>];
 sortlist { <address_match_element>; ... };
 stacksize (default | unlimited | <sizeval>);
 stale-answer-enable <boolean>;
 stale-answer-ttl <duration>;
 startup-notify-rate <integer>;
 statistics-file <quoted_string>;
 synth-from-dnssec <boolean>;
 tcp-advertised-timeout <integer>;
 tcp-clients <integer>;
 tcp-idle-timeout <integer>;
 tcp-initial-timeout <integer>;
 tcp-keepalive-timeout <integer>;
 tcp-listen-queue <integer>;
 tkey-dhkey <quoted_string> <integer>;
 tkey-domain <quoted_string>;
 tkey-gssapi-credential <quoted_string>;
 tkey-gssapi-keytab <quoted_string>;
 transfer-format (many-answers | one-answer);
 transfer-message-size <integer>;
 transfer-source (<ipv4_address> | *) [port (<integer> | *)] [
 dscp <integer>];
 transfer-source-v6 (<ipv6_address> | *) [port (<integer> | *)
] [dscp <integer>];
 transfers-in <integer>;
 transfers-out <integer>;
 transfers-per-ns <integer>;
 trust-anchor-telemetry <boolean>; // experimental
 try-tcp-refresh <boolean>;
 update-check-ksk <boolean>;
 use-alt-transfer-source <boolean>;
 use-v4-udp-ports { <portrange>; ... };
 use-v6-udp-ports { <portrange>; ... };
 v6-bias <integer>;
 validate-except { <string>; ... };
 version (<quoted_string> | none);
 zero-no-soa-ttl <boolean>;
 zero-no-soa-ttl-cache <boolean>;
 zone-statistics (full | terse | none | <boolean>);
};

4.2.14. options Statement Definition and Usage

The options statement sets up global options to be used by BIND.
This statement may appear only once in a configuration file. If there is
no options statement, an options block with each option set to its
default is used.

	attach-cache

	This option allows multiple views to share a single cache database. Each view has
its own cache database by default, but if multiple views have the
same operational policy for name resolution and caching, those views
can share a single cache to save memory, and possibly improve
resolution efficiency, by using this option.

The attach-cache option may also be specified in view
statements, in which case it overrides the global attach-cache
option.

The cache_name specifies the cache to be shared. When the named
server configures views which are supposed to share a cache, it
creates a cache with the specified name for the first view of these
sharing views. The rest of the views simply refer to the
already-created cache.

One common configuration to share a cache is to allow all views
to share a single cache. This can be done by specifying
attach-cache as a global option with an arbitrary name.

Another possible operation is to allow a subset of all views to share
a cache while the others retain their own caches. For example, if
there are three views A, B, and C, and only A and B should share a
cache, specify the attach-cache option as a view of A (or B)’s
option, referring to the other view name:

view "A" {
 // this view has its own cache
 ...
};
view "B" {
 // this view refers to A's cache
 attach-cache "A";
};
view "C" {
 // this view has its own cache
 ...
};

Views that share a cache must have the same policy on configurable
parameters that may affect caching. The current implementation
requires the following configurable options be consistent among these
views: check-names, dnssec-accept-expired,
dnssec-validation, max-cache-ttl, max-ncache-ttl,
max-stale-ttl, max-cache-size, min-cache-ttl,
min-ncache-ttl, and zero-no-soa-ttl.

Note that there may be other parameters that may cause confusion if
they are inconsistent for different views that share a single cache.
For example, if these views define different sets of forwarders that
can return different answers for the same question, sharing the
answer does not make sense or could even be harmful. It is the
administrator’s responsibility to ensure that configuration differences in
different views do not cause disruption with a shared cache.

	directory

	This sets the working directory of the server. Any non-absolute pathnames in
the configuration file are taken as relative to this directory.
The default location for most server output files (e.g.,
named.run) is this directory. If a directory is not specified,
the working directory defaults to ".", the directory from
which the server was started. The directory specified should be an
absolute path, and must be writable by the effective user ID of the
named process.

	dnstap

	dnstap is a fast, flexible method for capturing and logging DNS
traffic. Developed by Robert Edmonds at Farsight Security, Inc., and
supported by multiple DNS implementations, dnstap uses
libfstrm (a lightweight high-speed framing library; see
https://github.com/farsightsec/fstrm) to send event payloads which
are encoded using Protocol Buffers (libprotobuf-c, a mechanism
for serializing structured data developed by Google, Inc.; see
https://developers.google.com/protocol-buffers/).

To enable dnstap at compile time, the fstrm and
protobuf-c libraries must be available, and BIND must be
configured with --enable-dnstap.

The dnstap option is a bracketed list of message types to be
logged. These may be set differently for each view. Supported types
are client, auth, resolver, forwarder, and
update. Specifying type all causes all dnstap
messages to be logged, regardless of type.

Each type may take an additional argument to indicate whether to log
query messages or response messages; if not specified, both
queries and responses are logged.

Example: To log all authoritative queries and responses, recursive
client responses, and upstream queries sent by the resolver, use:

dnstap {
 auth;
 client response;
 resolver query;
};

Logged dnstap messages can be parsed using the dnstap-read
utility (see dnstap-read - print dnstap data in human-readable form for details).

For more information on dnstap, see http://dnstap.info.

The fstrm library has a number of tunables that are exposed in
named.conf, and can be modified if necessary to improve
performance or prevent loss of data. These are:

	fstrm-set-buffer-hint: The threshold number of bytes to
accumulate in the output buffer before forcing a buffer flush. The
minimum is 1024, the maximum is 65536, and the default is 8192.

	fstrm-set-flush-timeout: The number of seconds to allow
unflushed data to remain in the output buffer. The minimum is 1
second, the maximum is 600 seconds (10 minutes), and the default
is 1 second.

	fstrm-set-output-notify-threshold: The number of outstanding
queue entries to allow on an input queue before waking the I/O
thread. The minimum is 1 and the default is 32.

	fstrm-set-output-queue-model: The queuing semantics
to use for queue objects. The default is mpsc (multiple
producer, single consumer); the other option is spsc (single
producer, single consumer).

	fstrm-set-input-queue-size: The number of queue entries to
allocate for each input queue. This value must be a power of 2.
The minimum is 2, the maximum is 16384, and the default is 512.

	fstrm-set-output-queue-size: The number of queue entries to
allocate for each output queue. The minimum is 2, the maximum is
system-dependent and based on IOV_MAX, and the default is 64.

	fstrm-set-reopen-interval: The number of seconds to wait
between attempts to reopen a closed output stream. The minimum is
1 second, the maximum is 600 seconds (10 minutes), and the default
is 5 seconds. For convenience, TTL-style time-unit suffixes may be
used to specify the value.

Note that all of the above minimum, maximum, and default values are
set by the libfstrm library, and may be subject to change in
future versions of the library. See the libfstrm documentation
for more information.

	dnstap-output

	This configures the path to which the dnstap frame stream is sent
if dnstap is enabled at compile time and active.

The first argument is either file or unix, indicating whether
the destination is a file or a Unix domain socket. The second
argument is the path of the file or socket. (Note: when using a
socket, dnstap messages are only sent if another process such
as fstrm_capture (provided with libfstrm) is listening on the
socket.)

If the first argument is file, then up to three additional
options can be added: size indicates the size to which a
dnstap log file can grow before being rolled to a new file;
versions specifies the number of rolled log files to retain; and
suffix indicates whether to retain rolled log files with an
incrementing counter as the suffix (increment) or with the
current timestamp (timestamp). These are similar to the size,
versions, and suffix options in a logging channel. The
default is to allow dnstap log files to grow to any size without
rolling.

dnstap-output can only be set globally in options. Currently,
it can only be set once while named is running; once set, it
cannot be changed by rndc reload or rndc reconfig.

	dnstap-identity

	This specifies an identity string to send in dnstap messages. If
set to hostname, which is the default, the server’s hostname
is sent. If set to none, no identity string is sent.

	dnstap-version

	This specifies a version string to send in dnstap messages. The
default is the version number of the BIND release. If set to
none, no version string is sent.

	geoip-directory

	When named is compiled using the MaxMind GeoIP2 geolocation API, this
specifies the directory containing GeoIP database files. By default, the
option is set based on the prefix used to build the libmaxminddb module;
for example, if the library is installed in /usr/local/lib, then the
default geoip-directory is /usr/local/share/GeoIP. On Windows,
the default is the named working directory. See acl Statement Definition and Usage
for details about geoip ACLs.

	key-directory

	This is the directory where the public and private DNSSEC key files should be
found when performing a dynamic update of secure zones, if different
than the current working directory. (Note that this option has no
effect on the paths for files containing non-DNSSEC keys such as
bind.keys, rndc.key, or session.key.)

	lmdb-mapsize

	When named is built with liblmdb, this option sets a maximum size
for the memory map of the new-zone database (NZD) in LMDB database
format. This database is used to store configuration information for
zones added using rndc addzone. Note that this is not the NZD
database file size, but the largest size that the database may grow
to.

Because the database file is memory-mapped, its size is limited by
the address space of the named process. The default of 32 megabytes
was chosen to be usable with 32-bit named builds. The largest
permitted value is 1 terabyte. Given typical zone configurations
without elaborate ACLs, a 32 MB NZD file ought to be able to hold
configurations of about 100,000 zones.

	managed-keys-directory

	This specifies the directory in which to store the files that track managed DNSSEC
keys (i.e., those configured using the initial-key or initial-ds
keywords in a trust-anchors statement). By default, this is the working
directory. The directory must be writable by the effective user ID of the
named process.

If named is not configured to use views, managed keys for
the server are tracked in a single file called
managed-keys.bind. Otherwise, managed keys are tracked in
separate files, one file per view; each file name is the view
name (or, if it contains characters that are incompatible with use as
a file name, the SHA256 hash of the view name), followed by the
extension .mkeys.

(Note: in earlier releases, file names for views always used the
SHA256 hash of the view name. To ensure compatibility after upgrading,
if a file using the old name format is found to exist, it is
used instead of the new format.)

	max-ixfr-ratio

	This sets the size threshold (expressed as a percentage of the size of the full
zone) beyond which named chooses to use an AXFR response rather than
IXFR when answering zone transfer requests. See
Incremental Zone Transfers (IXFR).

	new-zones-directory

	This specifies the directory in which to store the configuration
parameters for zones added via rndc addzone. By default, this is
the working directory. If set to a relative path, it is relative
to the working directory. The directory must be writable by the
effective user ID of the named process.

	qname-minimization

	This option controls QNAME minimization behavior in the BIND
resolver. When set to strict, BIND follows the QNAME
minimization algorithm to the letter, as specified in RFC 7816 [https://tools.ietf.org/html/rfc7816.html].
Setting this option to relaxed causes BIND to fall back to
normal (non-minimized) query mode when it receives either NXDOMAIN or
other unexpected responses (e.g., SERVFAIL, improper zone cut,
REFUSED) to a minimized query. disabled disables QNAME
minimization completely. The current default is relaxed, but it
may be changed to strict in a future release.

	tkey-gssapi-keytab

	This is the KRB5 keytab file to use for GSS-TSIG updates. If this option is
set and tkey-gssapi-credential is not set, updates are
allowed with any key matching a principal in the specified keytab.

	tkey-gssapi-credential

	This is the security credential with which the server should authenticate
keys requested by the GSS-TSIG protocol. Currently only Kerberos 5
authentication is available; the credential is a Kerberos
principal which the server can acquire through the default system key
file, normally /etc/krb5.keytab. The location of the keytab file can be
overridden using the tkey-gssapi-keytab option. Normally this
principal is of the form DNS/server.domain. To use
GSS-TSIG, tkey-domain must also be set if a specific keytab is
not set with tkey-gssapi-keytab.

	tkey-domain

	This domain is appended to the names of all shared keys generated with
TKEY. When a client requests a TKEY exchange, it may or may
not specify the desired name for the key. If present, the name of the
shared key is client-specified part + tkey-domain.
Otherwise, the name of the shared key is random hex digits
+ tkey-domain. In most cases, the domainname
should be the server’s domain name, or an otherwise nonexistent
subdomain like _tkey.domainname. If using GSS-TSIG,
this variable must be defined, unless a specific keytab
is specified using tkey-gssapi-keytab.

	tkey-dhkey

	This is the Diffie-Hellman key used by the server to generate shared keys
with clients using the Diffie-Hellman mode of TKEY. The server
must be able to load the public and private keys from files in the
working directory. In most cases, the key_name should be the
server’s host name.

	cache-file

	This is for testing only. Do not use.

	dump-file

	This is the pathname of the file the server dumps the database to, when
instructed to do so with rndc dumpdb. If not specified, the
default is named_dump.db.

	memstatistics-file

	This is the pathname of the file the server writes memory usage statistics to
on exit. If not specified, the default is named.memstats.

	lock-file

	This is the pathname of a file on which named attempts to acquire a
file lock when starting for the first time; if unsuccessful, the
server terminates, under the assumption that another server
is already running. If not specified, the default is
none.

Specifying lock-file none disables the use of a lock file.
lock-file is ignored if named was run using the -X
option, which overrides it. Changes to lock-file are ignored if
named is being reloaded or reconfigured; it is only effective
when the server is first started.

	pid-file

	This is the pathname of the file the server writes its process ID in. If not
specified, the default is /var/run/named/named.pid. The PID file
is used by programs that send signals to the running name
server. Specifying pid-file none disables the use of a PID file;
no file is written and any existing one is removed. Note
that none is a keyword, not a filename, and therefore is not
enclosed in double quotes.

	recursing-file

	This is the pathname of the file where the server dumps the queries that are
currently recursing, when instructed to do so with rndc recursing.
If not specified, the default is named.recursing.

	statistics-file

	This is the pathname of the file the server appends statistics to, when
instructed to do so using rndc stats. If not specified, the
default is named.stats in the server’s current directory. The
format of the file is described in The Statistics File.

	bindkeys-file

	This is the pathname of a file to override the built-in trusted keys provided
by named. See the discussion of dnssec-validation for
details. If not specified, the default is /etc/bind.keys.

	secroots-file

	This is the pathname of the file the server dumps security roots to, when
instructed to do so with rndc secroots. If not specified, the
default is named.secroots.

	session-keyfile

	This is the pathname of the file into which to write a TSIG session key
generated by named for use by nsupdate -l. If not specified,
the default is /var/run/named/session.key. (See Dynamic Update Policies,
and in particular the discussion of the update-policy statement’s
local option, for more information about this feature.)

	session-keyname

	This is the key name to use for the TSIG session key. If not specified, the
default is local-ddns.

	session-keyalg

	This is the algorithm to use for the TSIG session key. Valid values are
hmac-sha1, hmac-sha224, hmac-sha256, hmac-sha384, hmac-sha512, and
hmac-md5. If not specified, the default is hmac-sha256.

	port

	This is the UDP/TCP port number the server uses to receive and send DNS
protocol traffic. The default is 53. This option is mainly intended
for server testing; a server using a port other than 53 is not
able to communicate with the global DNS.

	dscp

	This is the global Differentiated Services Code Point (DSCP) value to
classify outgoing DNS traffic, on operating systems that support DSCP.
Valid values are 0 through 63. It is not configured by default.

	random-device

	This specifies a source of entropy to be used by the server; it is a
device or file from which to read entropy. If it is a file,
operations requiring entropy will fail when the file has been
exhausted.

Entropy is needed for cryptographic operations such as TKEY
transactions, dynamic update of signed zones, and generation of TSIG
session keys. It is also used for seeding and stirring the
pseudo-random number generator which is used for less critical
functions requiring randomness, such as generation of DNS message
transaction IDs.

If random-device is not specified, or if it is set to none,
entropy is read from the random number generation function
supplied by the cryptographic library with which BIND was linked
(i.e. OpenSSL or a PKCS#11 provider).

The random-device option takes effect during the initial
configuration load at server startup time and is ignored on
subsequent reloads.

	preferred-glue

	If specified, the listed type (A or AAAA) is emitted before
other glue in the additional section of a query response. The default
is to prefer A records when responding to queries that arrived via
IPv4 and AAAA when responding to queries that arrived via IPv6.

	root-delegation-only

	This turns on enforcement of delegation-only in TLDs (top-level domains)
and root zones with an optional exclude list.

DS queries are expected to be made to and be answered by delegation-only
zones. Such queries and responses are treated as an exception to
delegation-only processing and are not converted to NXDOMAIN
responses, provided a CNAME is not discovered at the query name.

If a delegation-only zone server also serves a child zone, it is not
always possible to determine whether an answer comes from the
delegation-only zone or the child zone. SOA NS and DNSKEY records are
apex-only records and a matching response that contains these records
or DS is treated as coming from a child zone. RRSIG records are also
examined to see whether they are signed by a child zone, and the
authority section is examined to see if there is evidence that
the answer is from the child zone. Answers that are determined to be
from a child zone are not converted to NXDOMAIN responses. Despite
all these checks, there is still a possibility of false negatives when
a child zone is being served.

Similarly, false positives can arise from empty nodes (no records at
the name) in the delegation-only zone when the query type is not ANY.

Note that some TLDs are not delegation-only; e.g., “DE”, “LV”, “US”, and
“MUSEUM”. This list is not exhaustive.

options {
 root-delegation-only exclude { "de"; "lv"; "us"; "museum"; };
};

	disable-algorithms

	This disables the specified DNSSEC algorithms at and below the specified
name. Multiple disable-algorithms statements are allowed. Only
the best-match disable-algorithms clause is used to
determine the algorithms.

If all supported algorithms are disabled, the zones covered by the
disable-algorithms setting are treated as insecure.

Configured trust anchors in trusted-anchors (or managed-keys or
trusted-keys) that match a disabled algorithm are ignored and treated
as if they were not configured.

	disable-ds-digests

	This disables the specified DS digest types at and below the specified
name. Multiple disable-ds-digests statements are allowed. Only
the best-match disable-ds-digests clause is used to
determine the digest types.

If all supported digest types are disabled, the zones covered by
disable-ds-digests are treated as insecure.

	dnssec-must-be-secure

	This specifies hierarchies which must be or may not be secure (signed and
validated). If yes, then named only accepts answers if
they are secure. If no, then normal DNSSEC validation applies,
allowing insecure answers to be accepted. The specified domain
must be defined as a trust anchor, for instance in a trust-anchors
statement, or dnssec-validation auto must be active.

	dns64

	This directive instructs named to return mapped IPv4 addresses to
AAAA queries when there are no AAAA records. It is intended to be
used in conjunction with a NAT64. Each dns64 defines one DNS64
prefix. Multiple DNS64 prefixes can be defined.

Compatible IPv6 prefixes have lengths of 32, 40, 48, 56, 64, and 96, per
RFC 6052 [https://tools.ietf.org/html/rfc6052.html]. Bits 64..71 inclusive must be zero, with the most significant bit
of the prefix in position 0.

In addition, a reverse IP6.ARPA zone is created for the prefix
to provide a mapping from the IP6.ARPA names to the corresponding
IN-ADDR.ARPA names using synthesized CNAMEs. dns64-server and
dns64-contact can be used to specify the name of the server and
contact for the zones. These can be set at the view/options
level but not on a per-prefix basis.

Each dns64 supports an optional clients ACL that determines
which clients are affected by this directive. If not defined, it
defaults to any;.

Each dns64 supports an optional mapped ACL that selects which
IPv4 addresses are to be mapped in the corresponding A RRset. If not
defined, it defaults to any;.

Normally, DNS64 does not apply to a domain name that owns one or more
AAAA records; these records are simply returned. The optional
exclude ACL allows specification of a list of IPv6 addresses that
are ignored if they appear in a domain name’s AAAA records;
DNS64 is applied to any A records the domain name owns. If not
defined, exclude defaults to ::ffff:0.0.0.0/96.

An optional suffix can also be defined to set the bits trailing
the mapped IPv4 address bits. By default these bits are set to
::. The bits matching the prefix and mapped IPv4 address must be
zero.

If recursive-only is set to yes, the DNS64 synthesis only
happens for recursive queries. The default is no.

If break-dnssec is set to yes, the DNS64 synthesis happens
even if the result, if validated, would cause a DNSSEC validation
failure. If this option is set to no (the default), the DO is set
on the incoming query, and there are RRSIGs on the applicable
records, then synthesis does not happen.

acl rfc1918 { 10/8; 192.168/16; 172.16/12; };

dns64 64:FF9B::/96 {
 clients { any; };
 mapped { !rfc1918; any; };
 exclude { 64:FF9B::/96; ::ffff:0000:0000/96; };
 suffix ::;
};

	dnssec-loadkeys-interval

	When a zone is configured with auto-dnssec maintain;, its key
repository must be checked periodically to see if any new keys have
been added or any existing keys’ timing metadata has been updated
(see dnssec-keygen: DNSSEC key generation tool and dnssec-settime: set the key timing metadata for a DNSSEC key).
The dnssec-loadkeys-interval option
sets the frequency of automatic repository checks, in minutes. The
default is 60 (1 hour), the minimum is 1 (1 minute), and
the maximum is 1440 (24 hours); any higher value is silently
reduced.

	dnssec-policy

	This specifies which key and signing policy (KASP) should be used for this zone.
This is a string referring to a dnssec-policy statement. There are two
built-in policies: default, which uses the default policy, and
none, which means no DNSSEC policy and keeps the zone unsigned. The
default is none. See dnssec-policy Grammar for more details.

	dnssec-update-mode

	If this option is set to its default value of maintain in a zone
of type primary which is DNSSEC-signed and configured to allow
dynamic updates (see Dynamic Update Policies), and if named has access
to the private signing key(s) for the zone, then named
automatically signs all new or changed records and maintains signatures
for the zone by regenerating RRSIG records whenever they approach
their expiration date.

If the option is changed to no-resign, then named signs
all new or changed records, but scheduled maintenance of signatures
is disabled.

With either of these settings, named rejects updates to a
DNSSEC-signed zone when the signing keys are inactive or unavailable
to named. (A planned third option, external, will disable all
automatic signing and allow DNSSEC data to be submitted into a zone
via dynamic update; this is not yet implemented.)

	nta-lifetime

	This specifies the default lifetime, in seconds, for
negative trust anchors added via rndc nta.

A negative trust anchor selectively disables DNSSEC validation for
zones that are known to be failing because of misconfiguration, rather
than an attack. When data to be validated is at or below an active
NTA (and above any other configured trust anchors), named
aborts the DNSSEC validation process and treats the data as insecure
rather than bogus. This continues until the NTA’s lifetime has
elapsed. NTAs persist across named restarts.

For convenience, TTL-style time-unit suffixes can be used to specify the NTA
lifetime in seconds, minutes, or hours. It also accepts ISO 8601 duration
formats.

nta-lifetime defaults to one hour; it cannot exceed one week.

	nta-recheck

	This specifies how often to check whether negative trust anchors added via
rndc nta are still necessary.

A negative trust anchor is normally used when a domain has stopped
validating due to operator error; it temporarily disables DNSSEC
validation for that domain. In the interest of ensuring that DNSSEC
validation is turned back on as soon as possible, named
periodically sends a query to the domain, ignoring negative trust
anchors, to find out whether it can now be validated. If so, the
negative trust anchor is allowed to expire early.

Validity checks can be disabled for an individual NTA by using
rndc nta -f, or for all NTAs by setting nta-recheck to zero.

For convenience, TTL-style time-unit suffixes can be used to specify the NTA
recheck interval in seconds, minutes, or hours. It also accepts ISO 8601
duration formats.

The default is five minutes. It cannot be longer than nta-lifetime, which
cannot be longer than a week.

	max-zone-ttl

	This specifies a maximum permissible TTL value in seconds. For
convenience, TTL-style time-unit suffixes may be used to specify the
maximum value. When loading a zone file using a masterfile-format
of text or raw, any record encountered with a TTL higher than
max-zone-ttl causes the zone to be rejected.

This is useful in DNSSEC-signed zones because when rolling to a new
DNSKEY, the old key needs to remain available until RRSIG records
have expired from caches. The max-zone-ttl option guarantees that
the largest TTL in the zone is no higher than the set value.

(Note: because map-format files load directly into memory, this
option cannot be used with them.)

The default value is unlimited. A max-zone-ttl of zero is
treated as unlimited.

	stale-answer-ttl

	This specifies the TTL to be returned on stale answers. The default is 1
second. The minimum allowed is also 1 second; a value of 0 is
updated silently to 1 second.

For stale answers to be returned, they must be enabled, either in the
configuration file using stale-answer-enable or via
rndc serve-stale on.

	serial-update-method

	Zones configured for dynamic DNS may use this option to set the
update method to be used for the zone serial number in the SOA
record.

With the default setting of serial-update-method increment;, the
SOA serial number is incremented by one each time the zone is
updated.

When set to serial-update-method unixtime;, the SOA serial number
is set to the number of seconds since the Unix epoch, unless the
serial number is already greater than or equal to that value, in
which case it is simply incremented by one.

When set to serial-update-method date;, the new SOA serial number
is the current date in the form “YYYYMMDD”, followed by two
zeroes, unless the existing serial number is already greater than or
equal to that value, in which case it is incremented by one.

	zone-statistics

	If full, the server collects statistical data on all zones,
unless specifically turned off on a per-zone basis by specifying
zone-statistics terse or zone-statistics none in the zone
statement. The default is terse, providing minimal statistics on
zones (including name and current serial number, but not query type
counters).

These statistics may be accessed via the statistics-channel or
using rndc stats, which dumps them to the file listed in the
statistics-file. See also The Statistics File.

For backward compatibility with earlier versions of BIND 9, the
zone-statistics option can also accept yes or no; yes
has the same meaning as full. As of BIND 9.10, no has the
same meaning as none; previously, it was the same as terse.

4.2.14.1. Boolean Options

	automatic-interface-scan

	If yes and supported by the operating system, this automatically rescans
network interfaces when the interface addresses are added or removed. The
default is yes. This configuration option does not affect the time-based
interface-interval option; it is recommended to set the time-based
interface-interval to 0 when the operator confirms that automatic
interface scanning is supported by the operating system.

The automatic-interface-scan implementation uses routing sockets for the
network interface discovery; therefore, the operating system must
support the routing sockets for this feature to work.

	allow-new-zones

	If yes, then zones can be added at runtime via rndc addzone.
The default is no.

Newly added zones’ configuration parameters are stored so that they
can persist after the server is restarted. The configuration
information is saved in a file called viewname.nzf (or, if
named is compiled with liblmdb, in an LMDB database file called
viewname.nzd). “viewname” is the name of the view, unless the view
name contains characters that are incompatible with use as a file
name, in which case a cryptographic hash of the view name is used
instead.

Configurations for zones added at runtime are stored either in
a new-zone file (NZF) or a new-zone database (NZD), depending on
whether named was linked with liblmdb at compile time. See
rndc - name server control utility for further details about rndc addzone.

	auth-nxdomain

	If yes, then the AA bit is always set on NXDOMAIN responses,
even if the server is not actually authoritative. The default is
no.

	deallocate-on-exit

	This option was used in BIND 8 to enable checking for memory leaks on
exit. BIND 9 ignores the option and always performs the checks.

	memstatistics

	This writes memory statistics to the file specified by
memstatistics-file at exit. The default is no unless -m
record is specified on the command line, in which case it is yes.

	dialup

	If yes, then the server treats all zones as if they are doing
zone transfers across a dial-on-demand dialup link, which can be
brought up by traffic originating from this server. Although this setting has
different effects according to zone type, it concentrates the zone
maintenance so that everything happens quickly, once every
heartbeat-interval, ideally during a single call. It also
suppresses some normal zone maintenance traffic. The default
is no.

If specified in the view and
zone statements, the dialup option overrides the global dialup
option.

If the zone is a primary zone, the server sends out a NOTIFY
request to all the secondaries (default). This should trigger the zone
serial number check in the secondary (providing it supports NOTIFY),
allowing the secondary to verify the zone while the connection is active.
The set of servers to which NOTIFY is sent can be controlled by
notify and also-notify.

If the zone is a secondary or stub zone, the server suppresses
the regular “zone up to date” (refresh) queries and only performs them
when the heartbeat-interval expires, in addition to sending NOTIFY
requests.

Finer control can be achieved by using notify, which only sends
NOTIFY messages; notify-passive, which sends NOTIFY messages and
suppresses the normal refresh queries; refresh, which suppresses
normal refresh processing and sends refresh queries when the
heartbeat-interval expires; and passive, which disables
normal refresh processing.

	dialup mode

	normal refresh

	heart-beat
refresh

	heart-beat
notify

	no
(default)

	yes

	no

	no

	yes

	no

	yes

	yes

	notify

	yes

	no

	yes

	refresh

	no

	yes

	no

	passive

	no

	no

	no

	notify-passive

	no

	no

	yes

Note that normal NOTIFY processing is not affected by dialup.

	flush-zones-on-shutdown

	When the name server exits upon receiving SIGTERM, flush or do not
flush any pending zone writes. The default is
flush-zones-on-shutdown no.

	geoip-use-ecs

	This option was part of an experimental implementation of the EDNS
CLIENT-SUBNET for authoritative servers, but is now obsolete.

	root-key-sentinel

	If yes, respond to root key sentinel probes as described in
draft-ietf-dnsop-kskroll-sentinel-08. The default is yes.

	message-compression

	If yes, DNS name compression is used in responses to regular
queries (not including AXFR or IXFR, which always use compression).
Setting this option to no reduces CPU usage on servers and may
improve throughput. However, it increases response size, which may
cause more queries to be processed using TCP; a server with
compression disabled is out of compliance with RFC 1123 [https://tools.ietf.org/html/rfc1123.html] Section
6.1.3.2. The default is yes.

	minimal-responses

	This option controls the addition of records to the authority and
additional sections of responses. Such records may be included in
responses to be helpful to clients; for example, NS or MX records may
have associated address records included in the additional section,
obviating the need for a separate address lookup. However, adding
these records to responses is not mandatory and requires additional
database lookups, causing extra latency when marshalling responses.
minimal-responses takes one of four values:

	no: the server is as complete as possible when generating
responses.

	yes: the server only adds records to the authority and additional
sections when such records are required by the DNS protocol (for
example, when returning delegations or negative responses). This
provides the best server performance but may result in more client
queries.

	no-auth: the server omits records from the authority section except
when they are required, but it may still add records to the
additional section.

	no-auth-recursive: the same as no-auth when recursion is requested
in the query (RD=1), or the same as no if recursion is not requested.

no-auth and no-auth-recursive are useful when answering stub
clients, which usually ignore the authority section.
no-auth-recursive is meant for use in mixed-mode servers that
handle both authoritative and recursive queries.

The default is no-auth-recursive.

	glue-cache

	When set to yes, a cache is used to improve query performance
when adding address-type (A and AAAA) glue records to the additional
section of DNS response messages that delegate to a child zone.

The glue cache uses memory proportional to the number of delegations
in the zone. The default setting is yes, which improves
performance at the cost of increased memory usage for the zone. To avoid
this, set it to no.

	minimal-any

	If set to yes, the server replies with only one of
the RRsets for the query name, and its covering RRSIGs if any,
when generating a positive response to a query of type ANY over UDP,
instead of replying with all known RRsets for the name. Similarly, a
query for type RRSIG is answered with the RRSIG records covering
only one type. This can reduce the impact of some kinds of attack
traffic, without harming legitimate clients. (Note, however, that the
RRset returned is the first one found in the database; it is not
necessarily the smallest available RRset.) Additionally,
minimal-responses is turned on for these queries, so no
unnecessary records are added to the authority or additional
sections. The default is no.

	notify

	If set to yes (the default), DNS NOTIFY messages are sent when a
zone the server is authoritative for changes; see Notify.
The messages are sent to the servers listed in the zone’s NS records
(except the primary server identified in the SOA MNAME field), and to
any servers listed in the also-notify option.

If set to primary-only (or the older keyword master-only),
notifies are only sent for primary zones. If set to explicit,
notifies are sent only to servers explicitly listed using
also-notify. If set to no, no notifies are sent.

The notify option may also be specified in the zone
statement, in which case it overrides the options notify
statement. It would only be necessary to turn off this option if it
caused secondary zones to crash.

	notify-to-soa

	If yes, do not check the name servers in the NS RRset against the
SOA MNAME. Normally a NOTIFY message is not sent to the SOA MNAME
(SOA ORIGIN), as it is supposed to contain the name of the ultimate
primary server. Sometimes, however, a secondary server is listed as the SOA MNAME in
hidden primary configurations; in that case, the
ultimate primary should be set to still send NOTIFY messages to all the name servers
listed in the NS RRset.

	recursion

	If yes, and a DNS query requests recursion, then the server
attempts to do all the work required to answer the query. If recursion
is off and the server does not already know the answer, it
returns a referral response. The default is yes. Note that setting
recursion no does not prevent clients from getting data from the
server’s cache; it only prevents new data from being cached as an
effect of client queries. Caching may still occur as an effect of the
server’s internal operation, such as NOTIFY address lookups.

	request-nsid

	If yes, then an empty EDNS(0) NSID (Name Server Identifier)
option is sent with all queries to authoritative name servers during
iterative resolution. If the authoritative server returns an NSID
option in its response, then its contents are logged in the nsid
category at level info. The default is no.

	request-sit

	This experimental option is obsolete.

	require-server-cookie

	If yes, require a valid server cookie before sending a full response to a UDP
request from a cookie-aware client. BADCOOKIE is sent if there is a
bad or nonexistent server cookie.

The default is no.

Users wishing to test that DNS COOKIE clients correctly handle
BADCOOKIE, or who are getting a lot of forged DNS requests with DNS COOKIES
present, should set this to yes. Setting this to yes results in a reduced amplification effect
in a reflection attack, as the BADCOOKIE response is smaller than a full
response, while also requiring a legitimate client to follow up with a second
query with the new, valid, cookie.

	answer-cookie

	When set to the default value of yes, COOKIE EDNS options are
sent when applicable in replies to client queries. If set to no,
COOKIE EDNS options are not sent in replies. This can only be set
at the global options level, not per-view.

answer-cookie no is intended as a temporary measure, for use when
named shares an IP address with other servers that do not yet
support DNS COOKIE. A mismatch between servers on the same address is
not expected to cause operational problems, but the option to disable
COOKIE responses so that all servers have the same behavior is
provided out of an abundance of caution. DNS COOKIE is an important
security mechanism, and should not be disabled unless absolutely
necessary.

	send-cookie

	If yes, then a COOKIE EDNS option is sent along with the query.
If the resolver has previously communicated with the server, the COOKIE
returned in the previous transaction is sent. This is used by the
server to determine whether the resolver has talked to it before. A
resolver sending the correct COOKIE is assumed not to be an off-path
attacker sending a spoofed-source query; the query is therefore
unlikely to be part of a reflection/amplification attack, so
resolvers sending a correct COOKIE option are not subject to response
rate limiting (RRL). Resolvers which do not send a correct COOKIE
option may be limited to receiving smaller responses via the
nocookie-udp-size option.

The default is yes.

	stale-answer-enable

	If yes, enable the returning of “stale” cached answers when the name servers
for a zone are not answering. The default is not to return stale
answers.

Stale answers can also be enabled or disabled at runtime via
rndc serve-stale on or rndc serve-stale off; these override
the configured setting. rndc serve-stale reset restores the
setting to the one specified in named.conf. Note that if stale
answers have been disabled by rndc, they cannot be
re-enabled by reloading or reconfiguring named; they must be
re-enabled with rndc serve-stale on, or the server must be
restarted.

Information about stale answers is logged under the serve-stale
log category.

	nocookie-udp-size

	This sets the maximum size of UDP responses that are sent to queries
without a valid server COOKIE. A value below 128 is silently
raised to 128. The default value is 4096, but the max-udp-size
option may further limit the response size.

	sit-secret

	This experimental option is obsolete.

	cookie-algorithm

	This sets the algorithm to be used when generating the server cookie; the options are
“aes”, “sha1”, or “sha256”. The default is “aes” if supported by
the cryptographic library; otherwise, “sha256”.

	cookie-secret

	If set, this is a shared secret used for generating and verifying
EDNS COOKIE options within an anycast cluster. If not set, the system
generates a random secret at startup. The shared secret is
encoded as a hex string and needs to be 128 bits for AES128, 160 bits
for SHA1, and 256 bits for SHA256.

If there are multiple secrets specified, the first one listed in
named.conf is used to generate new server cookies. The others
are only used to verify returned cookies.

	response-padding

	The EDNS Padding option is intended to improve confidentiality when
DNS queries are sent over an encrypted channel, by reducing the
variability in packet sizes. If a query:

	contains an EDNS Padding option,

	includes a valid server cookie or uses TCP,

	is not signed using TSIG or SIG(0), and

	is from a client whose address matches the specified ACL,

then the response is padded with an EDNS Padding option to a multiple
of block-size bytes. If these conditions are not met, the
response is not padded.

If block-size is 0 or the ACL is none;, this feature is
disabled and no padding occurs; this is the default. If
block-size is greater than 512, a warning is logged and the value
is truncated to 512. Block sizes are ordinarily expected to be powers
of two (for instance, 128), but this is not mandatory.

	trust-anchor-telemetry

	This causes named to send specially formed queries once per day to
domains for which trust anchors have been configured via, e.g.,
dnssec-keys or dnssec-validation auto.

The query name used for these queries has the form
_ta-xxxx(-xxxx)(...).<domain>, where each “xxxx” is a group of four
hexadecimal digits representing the key ID of a trusted DNSSEC key.
The key IDs for each domain are sorted smallest to largest prior to
encoding. The query type is NULL.

By monitoring these queries, zone operators are able to see which
resolvers have been updated to trust a new key; this may help them
decide when it is safe to remove an old one.

The default is yes.

	use-ixfr

	This option is obsolete. To disable IXFR to a
particular server or servers, see the information on the
provide-ixfr option in server Statement Definition and Usage.
See also Incremental Zone Transfers (IXFR).

	provide-ixfr

	See the description of provide-ixfr in server Statement Definition and Usage.

	request-ixfr

	See the description of request-ixfr in server Statement Definition and Usage.

	request-expire

	See the description of request-expire in server Statement Definition and Usage.

	match-mapped-addresses

	If yes, then an IPv4-mapped IPv6 address matches any
address-match list entries that match the corresponding IPv4 address.

This option was introduced to work around a kernel quirk in some
operating systems that causes IPv4 TCP connections, such as zone
transfers, to be accepted on an IPv6 socket using mapped addresses.
This caused address-match lists designed for IPv4 to fail to match.
However, named now solves this problem internally. The use of
this option is discouraged.

	ixfr-from-differences

	When yes and the server loads a new version of a primary zone from
its zone file or receives a new version of a secondary file via zone
transfer, it compares the new version to the previous one and
calculates a set of differences. The differences are then logged in
the zone’s journal file so that the changes can be transmitted to
downstream secondaries as an incremental zone transfer.

By allowing incremental zone transfers to be used for non-dynamic
zones, this option saves bandwidth at the expense of increased CPU
and memory consumption at the primary server. In particular, if the new
version of a zone is completely different from the previous one, the
set of differences is of a size comparable to the combined size
of the old and new zone versions, and the server needs to
temporarily allocate memory to hold this complete difference set.

ixfr-from-differences also accepts primary
and secondary at the view and options levels,
which causes ixfr-from-differences to be enabled for all primary
or secondary zones, respectively. It is off for all zones by default.

Note: if inline signing is enabled for a zone, the user-provided
ixfr-from-differences setting is ignored for that zone.

	multi-master

	This should be set when there are multiple primary servers for a zone and the
addresses refer to different machines. If yes, named does not
log when the serial number on the primary is less than what named
currently has. The default is no.

	auto-dnssec

	Zones configured for dynamic DNS may use this option to allow varying
levels of automatic DNSSEC key management. There are three possible
settings:

auto-dnssec allow; permits keys to be updated and the zone fully
re-signed whenever the user issues the command rndc sign zonename.

auto-dnssec maintain; includes the above, but also
automatically adjusts the zone’s DNSSEC keys on a schedule, according
to the keys’ timing metadata (see dnssec-keygen: DNSSEC key generation tool and
dnssec-settime: set the key timing metadata for a DNSSEC key). The command rndc sign zonename
causes named to load keys from the key repository and sign the
zone with all keys that are active. rndc loadkeys zonename
causes named to load keys from the key repository and schedule
key maintenance events to occur in the future, but it does not sign
the full zone immediately. Note: once keys have been loaded for a
zone the first time, the repository is searched for changes
periodically, regardless of whether rndc loadkeys is used. The
recheck interval is defined by dnssec-loadkeys-interval.

The default setting is auto-dnssec off.

	dnssec-enable

	This option is obsolete and has no effect.

	dnssec-validation

	This option enables DNSSEC validation in named.

If set to auto, DNSSEC validation is enabled and a default trust
anchor for the DNS root zone is used.

If set to yes, DNSSEC validation is enabled, but a trust anchor must be
manually configured using a trust-anchors statement (or the
managed-keys or trusted-keys statements, both deprecated). If
there is no configured trust anchor, validation does not take place.

If set to no, DNSSEC validation is disabled.

The default is auto, unless BIND is built with
configure --disable-auto-validation, in which case the default is
yes.

The default root trust anchor is stored in the file bind.keys.
named loads that key at startup if dnssec-validation is
set to auto. A copy of the file is installed along with BIND 9,
and is current as of the release date. If the root key expires, a new
copy of bind.keys can be downloaded from
https://www.isc.org/bind-keys.

(To prevent problems if bind.keys is not found, the current trust
anchor is also compiled in named. Relying on this is not
recommended, however, as it requires named to be recompiled with
a new key when the root key expires.)

Note

named loads only the root key from bind.keys. The file
cannot be used to store keys for other zones. The root key in
bind.keys is ignored if dnssec-validation auto is not in
use.

Whenever the resolver sends out queries to an EDNS-compliant
server, it always sets the DO bit indicating it can support DNSSEC
responses, even if dnssec-validation is off.

	validate-except

	This specifies a list of domain names at and beneath which DNSSEC
validation should not be performed, regardless of the presence of a
trust anchor at or above those names. This may be used, for example,
when configuring a top-level domain intended only for local use, so
that the lack of a secure delegation for that domain in the root zone
does not cause validation failures. (This is similar to setting a
negative trust anchor except that it is a permanent configuration,
whereas negative trust anchors expire and are removed after a set
period of time.)

	dnssec-accept-expired

	This accepts expired signatures when verifying DNSSEC signatures. The
default is no. Setting this option to yes leaves named
vulnerable to replay attacks.

	querylog

	Query logging provides a complete log of all incoming queries and all query
errors. This provides more insight into the server’s activity, but with a
cost to performance which may be significant on heavily loaded servers.

The querylog option specifies whether query logging should be active when
named first starts. If querylog is not specified, then query logging
is determined by the presence of the logging category queries. Query
logging can also be activated at runtime using the command rndc querylog
on, or deactivated with rndc querylog off.

	check-names

	This option is used to restrict the character set and syntax of
certain domain names in primary files and/or DNS responses received
from the network. The default varies according to usage area. For
primary zones the default is fail. For secondary zones the
default is warn. For answers received from the network
(response), the default is ignore.

The rules for legal hostnames and mail domains are derived from
RFC 952 [https://tools.ietf.org/html/rfc952.html] and RFC 821 [https://tools.ietf.org/html/rfc821.html] as modified by RFC 1123 [https://tools.ietf.org/html/rfc1123.html].

check-names applies to the owner names of A, AAAA, and MX records.
It also applies to the domain names in the RDATA of NS, SOA, MX, and
SRV records. It further applies to the RDATA of PTR records where the
owner name indicates that it is a reverse lookup of a hostname (the
owner name ends in IN-ADDR.ARPA, IP6.ARPA, or IP6.INT).

	check-dup-records

	This checks primary zones for records that are treated as different by
DNSSEC but are semantically equal in plain DNS. The default is to
warn. Other possible values are fail and ignore.

	check-mx

	This checks whether the MX record appears to refer to an IP address. The
default is to warn. Other possible values are fail and
ignore.

	check-wildcard

	This option is used to check for non-terminal wildcards. The use of
non-terminal wildcards is almost always as a result of a lack of
understanding of the wildcard matching algorithm (RFC 1034 [https://tools.ietf.org/html/rfc1034.html]). This option
affects primary zones. The default (yes) is to check for
non-terminal wildcards and issue a warning.

	check-integrity

	This performs post-load zone integrity checks on primary zones. It checks
that MX and SRV records refer to address (A or AAAA) records and that
glue address records exist for delegated zones. For MX and SRV
records, only in-zone hostnames are checked (for out-of-zone hostnames,
use named-checkzone). For NS records, only names below top-of-zone
are checked (for out-of-zone names and glue consistency checks, use
named-checkzone). The default is yes.

The use of the SPF record to publish Sender Policy Framework is
deprecated, as the migration from using TXT records to SPF records was
abandoned. Enabling this option also checks that a TXT Sender Policy
Framework record exists (starts with “v=spf1”) if there is an SPF
record. Warnings are emitted if the TXT record does not exist; they can
be suppressed with check-spf.

	check-mx-cname

	If check-integrity is set, then fail, warn, or ignore MX records
that refer to CNAMES. The default is to warn.

	check-srv-cname

	If check-integrity is set, then fail, warn, or ignore SRV records
that refer to CNAMES. The default is to warn.

	check-sibling

	When performing integrity checks, also check that sibling glue
exists. The default is yes.

	check-spf

	If check-integrity is set, check that there is a TXT Sender
Policy Framework record present (starts with “v=spf1”) if there is an
SPF record present. The default is warn.

	zero-no-soa-ttl

	If yes, when returning authoritative negative responses to SOA queries, set
the TTL of the SOA record returned in the authority section to zero.
The default is yes.

	zero-no-soa-ttl-cache

	If yes, when caching a negative response to an SOA query set the TTL to zero.
The default is no.

	update-check-ksk

	When set to the default value of yes, check the KSK bit in each
key to determine how the key should be used when generating RRSIGs
for a secure zone.

Ordinarily, zone-signing keys (that is, keys without the KSK bit set)
are used to sign the entire zone, while key-signing keys (keys with
the KSK bit set) are only used to sign the DNSKEY RRset at the zone
apex. However, if this option is set to no, then the KSK bit is
ignored; KSKs are treated as if they were ZSKs and are used to sign
the entire zone. This is similar to the dnssec-signzone -z
command-line option.

When this option is set to yes, there must be at least two active
keys for every algorithm represented in the DNSKEY RRset: at least
one KSK and one ZSK per algorithm. If there is any algorithm for
which this requirement is not met, this option is ignored for
that algorithm.

	dnssec-dnskey-kskonly

	When this option and update-check-ksk are both set to yes,
only key-signing keys (that is, keys with the KSK bit set) are
used to sign the DNSKEY, CDNSKEY, and CDS RRsets at the zone apex.
Zone-signing keys (keys without the KSK bit set) are used to sign
the remainder of the zone, but not the DNSKEY RRset. This is similar
to the dnssec-signzone -x command-line option.

The default is no. If update-check-ksk is set to no, this
option is ignored.

	try-tcp-refresh

	If yes, try to refresh the zone using TCP if UDP queries fail. The default is
yes.

	dnssec-secure-to-insecure

	This allows a dynamic zone to transition from secure to insecure (i.e.,
signed to unsigned) by deleting all of the DNSKEY records. The
default is no. If set to yes, and if the DNSKEY RRset at the
zone apex is deleted, all RRSIG and NSEC records are removed from
the zone as well.

If the zone uses NSEC3, it is also necessary to delete the
NSEC3PARAM RRset from the zone apex; this causes the removal of
all corresponding NSEC3 records. (It is expected that this
requirement will be eliminated in a future release.)

Note that if a zone has been configured with auto-dnssec maintain
and the private keys remain accessible in the key repository,
the zone will be automatically signed again the next time named
is started.

	synth-from-dnssec

	This option synthesizes answers from cached NSEC, NSEC3, and other RRsets that have been
proved to be correct using DNSSEC. The default is no, but it will become
yes again in future releases.

Note

DNSSEC validation must be enabled for this option to be effective.
This initial implementation only covers synthesis of answers from
NSEC records; synthesis from NSEC3 is planned for the future. This
will also be controlled by synth-from-dnssec.

4.2.14.2. Forwarding

The forwarding facility can be used to create a large site-wide cache on
a few servers, reducing traffic over links to external name servers. It
can also be used to allow queries by servers that do not have direct
access to the Internet, but wish to look up exterior names anyway.
Forwarding occurs only on those queries for which the server is not
authoritative and does not have the answer in its cache.

	forward

	This option is only meaningful if the forwarders list is not empty. A
value of first is the default and causes the server to query the
forwarders first; if that does not answer the question, the
server then looks for the answer itself. If only is
specified, the server only queries the forwarders.

	forwarders

	This specifies a list of IP addresses to which queries are forwarded. The
default is the empty list (no forwarding). Each address in the list can be
associated with an optional port number and/or DSCP value, and a default port
number and DSCP value can be set for the entire list.

Forwarding can also be configured on a per-domain basis, allowing for
the global forwarding options to be overridden in a variety of ways.
Particular domains can be set to use different forwarders, or have a
different forward only/first behavior, or not forward at all; see
zone Statement Grammar.

4.2.14.3. Dual-stack Servers

Dual-stack servers are used as servers of last resort, to work around
problems in reachability due to the lack of support for either IPv4 or IPv6
on the host machine.

	dual-stack-servers

	This specifies host names or addresses of machines with access to both
IPv4 and IPv6 transports. If a hostname is used, the server must be
able to resolve the name using only the transport it has. If the
machine is dual-stacked, the dual-stack-servers parameter has no
effect unless access to a transport has been disabled on the command
line (e.g., named -4).

4.2.14.4. Access Control

Access to the server can be restricted based on the IP address of the
requesting system. See Address Match Lists
for details on how to specify IP address lists.

	allow-notify

	This ACL specifies which hosts may send NOTIFY messages to inform
this server of changes to zones for which it is acting as a secondary
server. This is only applicable for secondary zones (i.e., type
secondary or slave).

If this option is set in view or options, it is globally
applied to all secondary zones. If set in the zone statement, the
global value is overridden.

If not specified, the default is to process NOTIFY messages only from
the configured primaries for the zone. allow-notify can be used
to expand the list of permitted hosts, not to reduce it.

	allow-query

	This specifies which hosts are allowed to ask ordinary DNS questions.
allow-query may also be specified in the zone statement, in
which case it overrides the options allow-query statement. If not
specified, the default is to allow queries from all hosts.

Note

allow-query-cache is used to specify access to the cache.

	allow-query-on

	This specifies which local addresses can accept ordinary DNS questions.
This makes it possible, for instance, to allow queries on
internal-facing interfaces but disallow them on external-facing ones,
without necessarily knowing the internal network’s addresses.

Note that allow-query-on is only checked for queries that are
permitted by allow-query. A query must be allowed by both ACLs,
or it is refused.

allow-query-on may also be specified in the zone statement,
in which case it overrides the options allow-query-on statement.

If not specified, the default is to allow queries on all addresses.

Note

allow-query-cache is used to specify access to the cache.

	allow-query-cache

	This specifies which hosts are allowed to get answers from the cache. If
allow-recursion is not set, BIND checks to see if the following parameters
are set, in order: allow-query-cache and allow-query (unless recursion no; is set).
If neither of those parameters is set, the default (localnets; localhost;) is used.

	allow-query-cache-on

	This specifies which local addresses can send answers from the cache. If
allow-query-cache-on is not set, then allow-recursion-on is
used if set. Otherwise, the default is to allow cache responses to be
sent from any address. Note: both allow-query-cache and
allow-query-cache-on must be satisfied before a cache response
can be sent; a client that is blocked by one cannot be allowed by the
other.

	allow-recursion

	This specifies which hosts are allowed to make recursive queries through
this server. BIND checks to see if the following parameters are set, in
order: allow-query-cache and allow-query. If neither of those parameters
is set, the default (localnets; localhost;) is used.

	allow-recursion-on

	This specifies which local addresses can accept recursive queries. If
allow-recursion-on is not set, then allow-query-cache-on is
used if set; otherwise, the default is to allow recursive queries on
all addresses. Any client permitted to send recursive queries can
send them to any address on which named is listening. Note: both
allow-recursion and allow-recursion-on must be satisfied
before recursion is allowed; a client that is blocked by one cannot
be allowed by the other.

	allow-update

	When set in the zone statement for a primary zone, this specifies which
hosts are allowed to submit Dynamic DNS updates to that zone. The
default is to deny updates from all hosts.

Note that allowing updates based on the requestor’s IP address is
insecure; see Dynamic Update Security for details.

In general, this option should only be set at the zone level.
While a default value can be set at the options or view level
and inherited by zones, this could lead to some zones unintentionally
allowing updates.

	allow-update-forwarding

	When set in the zone statement for a secondary zone, this specifies which
hosts are allowed to submit Dynamic DNS updates and have them be
forwarded to the primary. The default is { none; }, which means
that no update forwarding is performed.

To enable update forwarding, specify
allow-update-forwarding { any; }; in the zone statement.
Specifying values other than { none; } or { any; } is usually
counterproductive; the responsibility for update access control
should rest with the primary server, not the secondary.

Note that enabling the update forwarding feature on a secondary server
may expose primary servers to attacks if they rely on insecure
IP-address-based access control; see Dynamic Update Security for more details.

In general this option should only be set at the zone level.
While a default value can be set at the options or view level
and inherited by zones, this can lead to some zones unintentionally
forwarding updates.

	allow-v6-synthesis

	This option was introduced for the smooth transition from AAAA to A6
and from “nibble labels” to binary labels. However, since both A6 and
binary labels were then deprecated, this option was also deprecated.
It is now ignored with some warning messages.

	allow-transfer

	This specifies which hosts are allowed to receive zone transfers from the
server. allow-transfer may also be specified in the zone
statement, in which case it overrides the allow-transfer
statement set in options or view. If not specified, the
default is to allow transfers to all hosts.

	blackhole

	This specifies a list of addresses which the server does not accept queries
from or use to resolve a query. Queries from these addresses are not
responded to. The default is none.

	keep-response-order

	This specifies a list of addresses to which the server sends responses
to TCP queries, in the same order in which they were received. This
disables the processing of TCP queries in parallel. The default is
none.

	no-case-compress

	This specifies a list of addresses which require responses to use
case-insensitive compression. This ACL can be used when named
needs to work with clients that do not comply with the requirement in
RFC 1034 [https://tools.ietf.org/html/rfc1034.html] to use case-insensitive name comparisons when checking for
matching domain names.

If left undefined, the ACL defaults to none: case-insensitive
compression is used for all clients. If the ACL is defined and
matches a client, case is ignored when compressing domain
names in DNS responses sent to that client.

This can result in slightly smaller responses; if a response contains
the names “example.com” and “example.COM”, case-insensitive
compression treats the second one as a duplicate. It also
ensures that the case of the query name exactly matches the case of
the owner names of returned records, rather than matches the case of
the records entered in the zone file. This allows responses to
exactly match the query, which is required by some clients due to
incorrect use of case-sensitive comparisons.

Case-insensitive compression is always used in AXFR and IXFR
responses, regardless of whether the client matches this ACL.

There are circumstances in which named does not preserve the case
of owner names of records: if a zone file defines records of
different types with the same name, but the capitalization of the
name is different (e.g., “www.example.com/A” and
“WWW.EXAMPLE.COM/AAAA”), then all responses for that name use
the first version of the name that was used in the zone file. This
limitation may be addressed in a future release. However, domain
names specified in the rdata of resource records (i.e., records of
type NS, MX, CNAME, etc.) always have their case preserved unless
the client matches this ACL.

	resolver-query-timeout

	This is the amount of time in milliseconds that the resolver spends
attempting to resolve a recursive query before failing. The default
and minimum is 10000 and the maximum is 30000. Setting it to
0 results in the default being used.

This value was originally specified in seconds. Values less than or
equal to 300 are treated as seconds and converted to
milliseconds before applying the above limits.

4.2.14.5. Interfaces

The interfaces and ports that the server answers queries from may be
specified using the listen-on option. listen-on takes an
optional port and an address_match_list of IPv4 addresses. (IPv6
addresses are ignored, with a logged warning.) The server listens on
all interfaces allowed by the address match list. If a port is not
specified, port 53 is used.

Multiple listen-on statements are allowed. For example:

listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };

enables the name server on port 53 for the IP address 5.6.7.8, and
on port 1234 of an address on the machine in net 1.2 that is not
1.2.3.4.

If no listen-on is specified, the server listens on port 53 on
all IPv4 interfaces.

The listen-on-v6 option is used to specify the interfaces and the
ports on which the server listens for incoming queries sent using
IPv6. If not specified, the server listens on port 53 on all IPv6
interfaces.

Multiple listen-on-v6 options can be used. For example:

listen-on-v6 { any; };
listen-on-v6 port 1234 { !2001:db8::/32; any; };

enables the name server on port 53 for any IPv6 addresses (with a
single wildcard socket), and on port 1234 of IPv6 addresses that are not
in the prefix 2001:db8::/32 (with separate sockets for each matched
address).

To instruct the server not to listen on any IPv6 address, use:

listen-on-v6 { none; };

4.2.14.6. Query Address

If the server does not know the answer to a question, it queries other
name servers. query-source specifies the address and port used for
such queries. For queries sent over IPv6, there is a separate
query-source-v6 option. If address is * (asterisk) or is
omitted, a wildcard IP address (INADDR_ANY) is used.

If port is * or is omitted, a random port number from a
pre-configured range is picked up and used for each query. The
port range(s) is specified in the use-v4-udp-ports (for IPv4)
and use-v6-udp-ports (for IPv6) options, excluding the ranges
specified in the avoid-v4-udp-ports and avoid-v6-udp-ports
options, respectively.

The defaults of the query-source and query-source-v6 options
are:

query-source address * port *;
query-source-v6 address * port *;

If use-v4-udp-ports or use-v6-udp-ports is unspecified,
named checks whether the operating system provides a programming
interface to retrieve the system’s default range for ephemeral ports. If
such an interface is available, named uses the corresponding
system default range; otherwise, it uses its own defaults:

use-v4-udp-ports { range 1024 65535; };
use-v6-udp-ports { range 1024 65535; };

Note

Make sure the ranges are sufficiently large for security. A
desirable size depends on several parameters, but we generally recommend
it contain at least 16384 ports (14 bits of entropy). Note also that the
system’s default range when used may be too small for this purpose, and
that the range may even be changed while named is running; the new
range is automatically applied when named is reloaded. Explicit
configuration of use-v4-udp-ports and use-v6-udp-ports is encouraged,
so that the ranges are sufficiently large and are reasonably
independent from the ranges used by other applications.

Note

The operational configuration where named runs may prohibit
the use of some ports. For example, Unix systems do not allow
named, if run without root privilege, to use ports less than 1024.
If such ports are included in the specified (or detected) set of query
ports, the corresponding query attempts will fail, resulting in
resolution failures or delay. It is therefore important to configure the
set of ports that can be safely used in the expected operational
environment.

The defaults of the avoid-v4-udp-ports and avoid-v6-udp-ports
options are:

avoid-v4-udp-ports {};
avoid-v6-udp-ports {};

Note

BIND 9.5.0 introduced the use-queryport-pool option to support
a pool of such random ports, but this option is now obsolete because
reusing the same ports in the pool may not be sufficiently secure. For
the same reason, it is generally strongly discouraged to specify a
particular port for the query-source or query-source-v6 options;
it implicitly disables the use of randomized port numbers.

	use-queryport-pool

	This option is obsolete.

	queryport-pool-ports

	This option is obsolete.

	queryport-pool-updateinterval

	This option is obsolete.

Note

The address specified in the query-source option is used for both
UDP and TCP queries, but the port applies only to UDP queries. TCP
queries always use a random unprivileged port.

Note

Solaris 2.5.1 and earlier does not support setting the source address
for TCP sockets.

Note

See also transfer-source and notify-source.

4.2.14.7. Zone Transfers

BIND has mechanisms in place to facilitate zone transfers and set limits
on the amount of load that transfers place on the system. The following
options apply to zone transfers.

	also-notify

	This option defines a global list of IP addresses of name servers that are also
sent NOTIFY messages whenever a fresh copy of the zone is loaded, in
addition to the servers listed in the zone’s NS records. This helps
to ensure that copies of the zones quickly converge on stealth
servers. Optionally, a port may be specified with each
also-notify address to send the notify messages to a port other
than the default of 53. An optional TSIG key can also be specified
with each address to cause the notify messages to be signed; this can
be useful when sending notifies to multiple views. In place of
explicit addresses, one or more named primaries lists can be used.

If an also-notify list is given in a zone statement, it
overrides the options also-notify statement. When a
zone notify statement is set to no, the IP addresses in the
global also-notify list are not sent NOTIFY messages for that
zone. The default is the empty list (no global notification list).

	max-transfer-time-in

	Inbound zone transfers running longer than this many minutes are
terminated. The default is 120 minutes (2 hours). The maximum value
is 28 days (40320 minutes).

	max-transfer-idle-in

	Inbound zone transfers making no progress in this many minutes are
terminated. The default is 60 minutes (1 hour). The maximum value
is 28 days (40320 minutes).

	max-transfer-time-out

	Outbound zone transfers running longer than this many minutes are
terminated. The default is 120 minutes (2 hours). The maximum value
is 28 days (40320 minutes).

	max-transfer-idle-out

	Outbound zone transfers making no progress in this many minutes are
terminated. The default is 60 minutes (1 hour). The maximum value
is 28 days (40320 minutes).

	notify-rate

	This specifies the rate at which NOTIFY requests are sent during normal zone
maintenance operations. (NOTIFY requests due to initial zone loading
are subject to a separate rate limit; see below.) The default is 20
per second. The lowest possible rate is one per second; when set to
zero, it is silently raised to one.

	startup-notify-rate

	This is the rate at which NOTIFY requests are sent when the name server
is first starting up, or when zones have been newly added to the
name server. The default is 20 per second. The lowest possible rate is
one per second; when set to zero, it is silently raised to one.

	serial-query-rate

	Secondary servers periodically query primary servers to find out if
zone serial numbers have changed. Each such query uses a minute
amount of the secondary server’s network bandwidth. To limit the amount
of bandwidth used, BIND 9 limits the rate at which queries are sent.
The value of the serial-query-rate option, an integer, is the
maximum number of queries sent per second. The default is 20 per
second. The lowest possible rate is one per second; when set to zero,
it is silently raised to one.

	transfer-format

	Zone transfers can be sent using two different formats,
one-answer and many-answers. The transfer-format option
is used on the primary server to determine which format it sends.
one-answer uses one DNS message per resource record transferred.
many-answers packs as many resource records as possible into one
message. many-answers is more efficient; the default is many-answers.
transfer-format may be overridden on a per-server basis by using
the server statement.

	transfer-message-size

	This is an upper bound on the uncompressed size of DNS messages used
in zone transfers over TCP. If a message grows larger than this size,
additional messages are used to complete the zone transfer.
(Note, however, that this is a hint, not a hard limit; if a message
contains a single resource record whose RDATA does not fit within the
size limit, a larger message will be permitted so the record can be
transferred.)

Valid values are between 512 and 65535 octets; any values outside
that range are adjusted to the nearest value within it. The
default is 20480, which was selected to improve message
compression; most DNS messages of this size will compress to less
than 16536 bytes. Larger messages cannot be compressed as
effectively, because 16536 is the largest permissible compression
offset pointer in a DNS message.

This option is mainly intended for server testing; there is rarely
any benefit in setting a value other than the default.

	transfers-in

	This is the maximum number of inbound zone transfers that can run
concurrently. The default value is 10. Increasing
transfers-in may speed up the convergence of secondary zones, but it
also may increase the load on the local system.

	transfers-out

	This is the maximum number of outbound zone transfers that can run
concurrently. Zone transfer requests in excess of the limit are
refused. The default value is 10.

	transfers-per-ns

	This is the maximum number of inbound zone transfers that can concurrently
transfer from a given remote name server. The default value is
2. Increasing transfers-per-ns may speed up the convergence
of secondary zones, but it also may increase the load on the remote name
server. transfers-per-ns may be overridden on a per-server basis
by using the transfers phrase of the server statement.

	transfer-source

	transfer-source determines which local address is bound to
IPv4 TCP connections used to fetch zones transferred inbound by the
server. It also determines the source IPv4 address, and optionally
the UDP port, used for the refresh queries and forwarded dynamic
updates. If not set, it defaults to a system-controlled value which
is usually the address of the interface “closest to” the remote
end. This address must appear in the remote end’s allow-transfer
option for the zone being transferred, if one is specified. This
statement sets the transfer-source for all zones, but can be
overridden on a per-view or per-zone basis by including a
transfer-source statement within the view or zone block
in the configuration file.

Note

Solaris 2.5.1 and earlier does not support setting the source
address for TCP sockets.

	transfer-source-v6

	This option is the same as transfer-source, except zone transfers are performed
using IPv6.

	alt-transfer-source

	This indicates an alternate transfer source if the one listed in transfer-source
fails and use-alt-transfer-source is set.

Note

To avoid using the alternate transfer source,
set use-alt-transfer-source appropriately and
do not depend upon getting an answer back to the first refresh
query.

	alt-transfer-source-v6

	This indicates an alternate transfer source if the one listed in
transfer-source-v6 fails and use-alt-transfer-source is set.

	use-alt-transfer-source

	This indicates whether the alternate transfer sources should be used. If views are specified,
this defaults to no; otherwise, it defaults to yes.

	notify-source

	notify-source determines which local source address, and
optionally UDP port, is used to send NOTIFY messages. This
address must appear in the secondary server’s primaries zone clause or
in an allow-notify clause. This statement sets the
notify-source for all zones, but can be overridden on a per-zone
or per-view basis by including a notify-source statement within
the zone or view block in the configuration file.

Note

Solaris 2.5.1 and earlier does not support setting the source
address for TCP sockets.

	notify-source-v6

	This option acts like notify-source, but applies to notify messages sent to IPv6
addresses.

4.2.14.8. UDP Port Lists

use-v4-udp-ports, avoid-v4-udp-ports, use-v6-udp-ports, and
avoid-v6-udp-ports specify a list of IPv4 and IPv6 UDP ports that
are or are not used as source ports for UDP messages. See
Query Address about how the available ports are
determined. For example, with the following configuration:

use-v6-udp-ports { range 32768 65535; };
avoid-v6-udp-ports { 40000; range 50000 60000; };

UDP ports of IPv6 messages sent from named are in one of the
following ranges: 32768 to 39999, 40001 to 49999, and 60001 to 65535.

avoid-v4-udp-ports and avoid-v6-udp-ports can be used to prevent
named from choosing as its random source port a port that is blocked
by a firewall or a port that is used by other applications; if a
query went out with a source port blocked by a firewall, the answer
would not pass through the firewall and the name server would have to query
again. Note: the desired range can also be represented only with
use-v4-udp-ports and use-v6-udp-ports, and the avoid-
options are redundant in that sense; they are provided for backward
compatibility and to possibly simplify the port specification.

4.2.14.9. Operating System Resource Limits

The server’s usage of many system resources can be limited. Scaled
values are allowed when specifying resource limits. For example, 1G
can be used instead of 1073741824 to specify a limit of one
gigabyte. unlimited requests unlimited use, or the maximum available
amount. default uses the limit that was in force when the server was
started. See the description of size_spec in Configuration File Elements.

The following options set operating system resource limits for the name
server process. Some operating systems do not support some or any of the
limits; on such systems, a warning is issued if an unsupported
limit is used.

	coresize

	This sets the maximum size of a core dump. The default is default.

	datasize

	This sets the maximum amount of data memory the server may use. The default is
default. This is a hard limit on server memory usage; if the
server attempts to allocate memory in excess of this limit, the
allocation will fail, which may in turn leave the server unable to
perform DNS service. Therefore, this option is rarely useful as a way
to limit the amount of memory used by the server, but it can be
used to raise an operating system data size limit that is too small
by default. To limit the amount of memory used by the
server, use the max-cache-size and recursive-clients options
instead.

	files

	This sets the maximum number of files the server may have open concurrently.
The default is unlimited.

	stacksize

	This sets the maximum amount of stack memory the server may use. The default is
default.

4.2.14.10. Server Resource Limits

The following options set limits on the server’s resource consumption
that are enforced internally by the server rather than by the operating
system.

	max-journal-size

	This sets a maximum size for each journal file (see The Journal File),
expressed in bytes or, if followed by an
optional unit suffix (‘k’, ‘m’, or ‘g’), in kilobytes, megabytes, or
gigabytes. When the journal file approaches the specified size, some
of the oldest transactions in the journal are automatically
removed. The largest permitted value is 2 gigabytes. Very small
values are rounded up to 4096 bytes. It is possible to specify unlimited,
which also means 2 gigabytes. If the limit is set to default or
left unset, the journal is allowed to grow up to twice as large
as the zone. (There is little benefit in storing larger journals.)

This option may also be set on a per-zone basis.

	max-records

	This sets the maximum number of records permitted in a zone. The default is
zero, which means the maximum is unlimited.

	recursive-clients

	This sets the maximum number (a “hard quota”) of simultaneous recursive lookups
the server performs on behalf of clients. The default is
1000. Because each recursing client uses a fair bit of memory (on
the order of 20 kilobytes), the value of the recursive-clients
option may have to be decreased on hosts with limited memory.

recursive-clients defines a “hard quota” limit for pending
recursive clients; when more clients than this are pending, new
incoming requests are not accepted, and for each incoming request
a previous pending request is dropped.

A “soft quota” is also set. When this lower quota is exceeded,
incoming requests are accepted, but for each one, a pending request
is dropped. If recursive-clients is greater than 1000, the
soft quota is set to recursive-clients minus 100; otherwise it is
set to 90% of recursive-clients.

	tcp-clients

	This is the maximum number of simultaneous client TCP connections that the
server accepts. The default is 150.

	clients-per-query; max-clients-per-query

	These set the initial value (minimum) and maximum number of recursive
simultaneous clients for any given query (<qname,qtype,qclass>) that
the server accepts before dropping additional clients. named
attempts to self-tune this value and changes are logged. The
default values are 10 and 100.

This value should reflect how many queries come in for a given name
in the time it takes to resolve that name. If the number of queries
exceeds this value, named assumes that it is dealing with a
non-responsive zone and drops additional queries. If it gets a
response after dropping queries, it raises the estimate. The
estimate is then lowered in 20 minutes if it has remained
unchanged.

If clients-per-query is set to zero, there is no limit on
the number of clients per query and no queries are dropped.

If max-clients-per-query is set to zero, there is no upper
bound other than that imposed by recursive-clients.

	fetches-per-zone

	This sets the maximum number of simultaneous iterative queries to any one
domain that the server permits before blocking new queries for
data in or beneath that zone. This value should reflect how many
fetches would normally be sent to any one zone in the time it would
take to resolve them. It should be smaller than
recursive-clients.

When many clients simultaneously query for the same name and type,
the clients are all attached to the same fetch, up to the
max-clients-per-query limit, and only one iterative query is
sent. However, when clients are simultaneously querying for
different names or types, multiple queries are sent and
max-clients-per-query is not effective as a limit.

Optionally, this value may be followed by the keyword drop or
fail, indicating whether queries which exceed the fetch quota for
a zone are dropped with no response, or answered with SERVFAIL.
The default is drop.

If fetches-per-zone is set to zero, there is no limit on the
number of fetches per query and no queries are dropped. The
default is zero.

The current list of active fetches can be dumped by running
rndc recursing. The list includes the number of active fetches
for each domain and the number of queries that have been passed or
dropped as a result of the fetches-per-zone limit. (Note: these
counters are not cumulative over time; whenever the number of active
fetches for a domain drops to zero, the counter for that domain is
deleted, and the next time a fetch is sent to that domain, it is
recreated with the counters set to zero.)

	fetches-per-server

	This sets the maximum number of simultaneous iterative queries that the server
allows to be sent to a single upstream name server before
blocking additional queries. This value should reflect how many
fetches would normally be sent to any one server in the time it would
take to resolve them. It should be smaller than
recursive-clients.

Optionally, this value may be followed by the keyword drop or
fail, indicating whether queries are dropped with no
response or answered with SERVFAIL, when all of the servers
authoritative for a zone are found to have exceeded the per-server
quota. The default is fail.

If fetches-per-server is set to zero, there is no limit on
the number of fetches per query and no queries are dropped. The
default is zero.

The fetches-per-server quota is dynamically adjusted in response
to detected congestion. As queries are sent to a server and either are
answered or time out, an exponentially weighted moving average
is calculated of the ratio of timeouts to responses. If the current
average timeout ratio rises above a “high” threshold, then
fetches-per-server is reduced for that server. If the timeout
ratio drops below a “low” threshold, then fetches-per-server is
increased. The fetch-quota-params options can be used to adjust
the parameters for this calculation.

	fetch-quota-params

	This sets the parameters to use for dynamic resizing of the
fetches-per-server quota in response to detected congestion.

The first argument is an integer value indicating how frequently to
recalculate the moving average of the ratio of timeouts to responses
for each server. The default is 100, meaning that BIND recalculates the
average ratio after every 100 queries have either been answered or
timed out.

The remaining three arguments represent the “low” threshold
(defaulting to a timeout ratio of 0.1), the “high” threshold
(defaulting to a timeout ratio of 0.3), and the discount rate for the
moving average (defaulting to 0.7). A higher discount rate causes
recent events to weigh more heavily when calculating the moving
average; a lower discount rate causes past events to weigh more
heavily, smoothing out short-term blips in the timeout ratio. These
arguments are all fixed-point numbers with precision of 1/100; at
most two places after the decimal point are significant.

	reserved-sockets

	This sets the number of file descriptors reserved for TCP, stdio, etc. This
needs to be big enough to cover the number of interfaces named
listens on plus tcp-clients, as well as to provide room for
outgoing TCP queries and incoming zone transfers. The default is
512. The minimum value is 128 and the maximum value is
128 fewer than maxsockets (-S). This option may be removed in the
future.

This option has little effect on Windows.

	max-cache-size

	This sets the maximum amount of memory to use for the server’s cache, in bytes
or percentage of total physical memory. When the amount of data in the cache
reaches this limit, the server causes records to expire
prematurely, following an LRU-based strategy, so that the limit is not
exceeded. The keyword unlimited, or the value 0, places no
limit on the cache size; records are purged from the cache only when
their TTLs expire. Any positive values less than 2MB are ignored
and reset to 2MB. In a server with multiple views, the limit applies
separately to the cache of each view. The default is 90%. On
systems where detection of the amount of physical memory is not supported,
values represented as a percentage fall back to unlimited. Note that the
detection of physical memory is done only once at startup, so
named does not adjust the cache size if the amount of physical
memory is changed during runtime.

	tcp-listen-queue

	This sets the listen-queue depth. The default and minimum is 10. If the kernel
supports the accept filter “dataready”, this also controls how many
TCP connections are queued in kernel space waiting for some
data before being passed to accept. Non-zero values less than 10 are
silently raised. A value of 0 may also be used; on most platforms
this sets the listen-queue length to a system-defined default value.

	tcp-initial-timeout

	This sets the amount of time (in units of 100 milliseconds) that the server waits on
a new TCP connection for the first message from the client. The
default is 300 (30 seconds), the minimum is 25 (2.5 seconds), and the
maximum is 1200 (two minutes). Values above the maximum or below the
minimum are adjusted with a logged warning. (Note: this value
must be greater than the expected round-trip delay time; otherwise, no
client will ever have enough time to submit a message.) This value
can be updated at runtime by using rndc tcp-timeouts.

	tcp-idle-timeout

	This sets the amount of time (in units of 100 milliseconds) that the server waits on
an idle TCP connection before closing it, when the client is not using
the EDNS TCP keepalive option. The default is 300 (30 seconds), the
maximum is 1200 (two minutes), and the minimum is 1 (one-tenth of a
second). Values above the maximum or below the minimum are
adjusted with a logged warning. See tcp-keepalive-timeout for
clients using the EDNS TCP keepalive option. This value can be
updated at runtime by using rndc tcp-timeouts.

	tcp-keepalive-timeout

	This sets the amount of time (in units of 100 milliseconds) that the server waits on
an idle TCP connection before closing it, when the client is using the
EDNS TCP keepalive option. The default is 300 (30 seconds), the
maximum is 65535 (about 1.8 hours), and the minimum is 1 (one-tenth
of a second). Values above the maximum or below the minimum are
adjusted with a logged warning. This value may be greater than
tcp-idle-timeout because clients using the EDNS TCP keepalive
option are expected to use TCP connections for more than one message.
This value can be updated at runtime by using rndc tcp-timeouts.

	tcp-advertised-timeout

	This sets the timeout value (in units of 100 milliseconds) that the server sends
in responses containing the EDNS TCP keepalive option, which informs a
client of the amount of time it may keep the session open. The
default is 300 (30 seconds), the maximum is 65535 (about 1.8 hours),
and the minimum is 0, which signals that the clients must close TCP
connections immediately. Ordinarily this should be set to the same
value as tcp-keepalive-timeout. This value can be updated at
runtime by using rndc tcp-timeouts.

4.2.14.11. Periodic Task Intervals

	cleaning-interval

	This option is obsolete.

	heartbeat-interval

	The server performs zone maintenance tasks for all zones marked
as dialup whenever this interval expires. The default is 60
minutes. Reasonable values are up to 1 day (1440 minutes). The
maximum value is 28 days (40320 minutes). If set to 0, no zone
maintenance for these zones occurs.

	interface-interval

	The server scans the network interface list every interface-interval
minutes. The default is 60 minutes; the maximum value is 28 days (40320
minutes). If set to 0, interface scanning only occurs when the configuration
file is loaded, or when automatic-interface-scan is enabled and supported
by the operating system. After the scan, the server begins listening for
queries on any newly discovered interfaces (provided they are allowed by the
listen-on configuration), and stops listening on interfaces that have
gone away. For convenience, TTL-style time-unit suffixes may be used to
specify the value. It also accepts ISO 8601 duration formats.

4.2.14.12. The sortlist Statement

The response to a DNS query may consist of multiple resource records
(RRs) forming a resource record set (RRset). The name server
normally returns the RRs within the RRset in an indeterminate order (but
see the rrset-order statement in RRset Ordering). The client resolver code should
rearrange the RRs as appropriate: that is, using any addresses on the
local net in preference to other addresses. However, not all resolvers
can do this or are correctly configured. When a client is using a local
server, the sorting can be performed in the server, based on the
client’s address. This only requires configuring the name servers, not
all the clients.

The sortlist statement (see below) takes an address_match_list and
interprets it in a special way. Each top-level statement in the sortlist
must itself be an explicit address_match_list with one or two elements. The
first element (which may be an IP address, an IP prefix, an ACL name, or a nested
address_match_list) of each top-level list is checked against the source
address of the query until a match is found. When the addresses in the first
element overlap, the first rule to match is selected.

Once the source address of the query has been matched, if the top-level
statement contains only one element, the actual primitive element that
matched the source address is used to select the address in the response
to move to the beginning of the response. If the statement is a list of
two elements, then the second element is interpreted as a topology
preference list. Each top-level element is assigned a distance, and the
address in the response with the minimum distance is moved to the
beginning of the response.

In the following example, any queries received from any of the addresses
of the host itself get responses preferring addresses on any of the
locally connected networks. Next most preferred are addresses on the
192.168.1/24 network, and after that either the 192.168.2/24 or
192.168.3/24 network, with no preference shown between these two
networks. Queries received from a host on the 192.168.1/24 network
prefer other addresses on that network to the 192.168.2/24 and
192.168.3/24 networks. Queries received from a host on the 192.168.4/24
or the 192.168.5/24 network only prefer other addresses on their
directly connected networks.

sortlist {
 // IF the local host
 // THEN first fit on the following nets
 { localhost;
 { localnets;
 192.168.1/24;
 { 192.168.2/24; 192.168.3/24; }; }; };
 // IF on class C 192.168.1 THEN use .1, or .2 or .3
 { 192.168.1/24;
 { 192.168.1/24;
 { 192.168.2/24; 192.168.3/24; }; }; };
 // IF on class C 192.168.2 THEN use .2, or .1 or .3
 { 192.168.2/24;
 { 192.168.2/24;
 { 192.168.1/24; 192.168.3/24; }; }; };
 // IF on class C 192.168.3 THEN use .3, or .1 or .2
 { 192.168.3/24;
 { 192.168.3/24;
 { 192.168.1/24; 192.168.2/24; }; }; };
 // IF .4 or .5 THEN prefer that net
 { { 192.168.4/24; 192.168.5/24; };
 };
};

The following example illlustrates reasonable behavior for the local host
and hosts on directly connected networks. Responses sent to queries from the
local host favor any of the directly connected networks. Responses
sent to queries from any other hosts on a directly connected network
prefer addresses on that same network. Responses to other queries
are not sorted.

sortlist {
 { localhost; localnets; };
 { localnets; };
};

4.2.14.13. RRset Ordering

When multiple records are returned in an answer, it may be useful to
configure the order of the records placed into the response. The
rrset-order statement permits configuration of the ordering of the
records in a multiple-record response. See also the sortlist
statement, The sortlist Statement.

An order_spec is defined as follows:

[class class_name] [type type_name] [name “domain_name”] order ordering

If no class is specified, the default is ANY. If no type is
specified, the default is ANY. If no name is specified, the default
is * (asterisk).

The legal values for ordering are:

	fixed

	Records are returned in the order they are defined in the zone file. This option is only available if BIND is configured with --enable-fixed-rrset at compile time.

	random

	Records are returned in a random order.

	cyclic

	Records are returned in a cyclic round-robin order, rotating by one record per query. If BIND is configured with --enable-fixed-rrset at compile time, the initial ordering of the RRset matches the one specified in the zone file; otherwise the initial ordering is indeterminate.

	none

	Records are returned in whatever order they were retrieved from the database. This order is indeterminate, but remains consistent as long as the database is not modified. When no ordering is specified, this is the default.

For example:

rrset-order {
 class IN type A name "host.example.com" order random;
 order cyclic;
};

causes any responses for type A records in class IN, that have
host.example.com as a suffix, to always be returned in random
order. All other records are returned in cyclic order.

If multiple rrset-order statements appear, they are not combined;
the last one applies.

By default, records are returned in random order.

Note

“Fixed” ordering of the rrset-order statement by default is not
currently supported in BIND 9. Fixed ordering can be enabled at
compile time by specifying “–enable-fixed-rrset” on the “configure”
command line.

4.2.14.14. Tuning

	lame-ttl

	This sets the number of seconds to cache a lame server indication. 0
disables caching. (This is NOT recommended.) The default is
600 (10 minutes) and the maximum value is 1800 (30 minutes).

	servfail-ttl

	This sets the number of seconds to cache a SERVFAIL response due to DNSSEC
validation failure or other general server failure. If set to 0,
SERVFAIL caching is disabled. The SERVFAIL cache is not consulted if
a query has the CD (Checking Disabled) bit set; this allows a query
that failed due to DNSSEC validation to be retried without waiting
for the SERVFAIL TTL to expire.

The maximum value is 30 seconds; any higher value is
silently reduced. The default is 1 second.

	min-ncache-ttl

	To reduce network traffic and increase performance, the server stores
negative answers. min-ncache-ttl is used to set a minimum
retention time for these answers in the server, in seconds. For
convenience, TTL-style time-unit suffixes may be used to specify the
value. It also accepts ISO 8601 duration formats.

The default min-ncache-ttl is 0 seconds. min-ncache-ttl cannot
exceed 90 seconds and is truncated to 90 seconds if set to a greater
value.

	min-cache-ttl

	This sets the minimum time for which the server caches ordinary (positive)
answers, in seconds. For convenience, TTL-style time-unit suffixes may be used
to specify the value. It also accepts ISO 8601 duration formats.

The default min-cache-ttl is 0 seconds. min-cache-ttl cannot
exceed 90 seconds and is truncated to 90 seconds if set to a greater
value.

	max-ncache-ttl

	To reduce network traffic and increase performance, the server stores
negative answers. max-ncache-ttl is used to set a maximum retention time
for these answers in the server, in seconds. For convenience, TTL-style
time-unit suffixes may be used to specify the value. It also accepts ISO 8601
duration formats.

The default max-ncache-ttl is 10800 seconds (3 hours). max-ncache-ttl
cannot exceed 7 days and is silently truncated to 7 days if set to a
greater value.

	max-cache-ttl

	This sets the maximum time for which the server caches ordinary (positive)
answers, in seconds. For convenience, TTL-style time-unit suffixes may be used
to specify the value. It also accepts ISO 8601 duration formats.

The default max-cache-ttl is 604800 (one week). A value of zero may cause
all queries to return SERVFAIL, because of lost caches of intermediate RRsets
(such as NS and glue AAAA/A records) in the resolution process.

	max-stale-ttl

	If stale answers are enabled, max-stale-ttl sets the maximum time
for which the server retains records past their normal expiry to
return them as stale records, when the servers for those records are
not reachable. The default is 12 hours. The minimum allowed is 1
second; a value of 0 is updated silently to 1 second.

For stale answers to be returned, they must be enabled, either in the
configuration file using stale-answer-enable or via
rndc serve-stale on.

	resolver-nonbackoff-tries

	This specifies how many retries occur before exponential backoff kicks in. The
default is 3.

	resolver-retry-interval

	This sets the base retry interval in milliseconds. The default is 800.

	sig-validity-interval

	This specifies the number of days into the future that DNSSEC signatures
that are automatically generated as a result of dynamic updates
(Dynamic Update) will expire. There is an optional second
field which specifies how long before expiry the signatures are
regenerated. If not specified, the signatures are regenerated
at 1/4 of the base interval. The second field is specified in days if the
base interval is greater than 7 days; otherwise it is specified in
hours. The default base interval is 30 days, giving a re-signing
interval of 7 1/2 days. The maximum value is 10 years (3660 days).

The signature inception time is unconditionally set to one hour
before the current time, to allow for a limited amount of clock skew.

The sig-validity-interval can be overridden for DNSKEY records by
setting dnskey-sig-validity.

The sig-validity-interval should be at least several multiples
of the SOA expire interval, to allow for reasonable interaction
between the various timer and expiry dates.

	dnskey-sig-validity

	This specifies the number of days into the future when DNSSEC signatures
that are automatically generated for DNSKEY RRsets as a result of
dynamic updates (Dynamic Update) will expire.
If set to a non-zero value, this overrides the value set by
sig-validity-interval. The default is zero, meaning
sig-validity-interval is used. The maximum value is 3660 days (10
years), and higher values are rejected.

	sig-signing-nodes

	This specifies the maximum number of nodes to be examined in each quantum,
when signing a zone with a new DNSKEY. The default is 100.

	sig-signing-signatures

	This specifies a threshold number of signatures that terminates
processing a quantum, when signing a zone with a new DNSKEY. The
default is 10.

	sig-signing-type

	This specifies a private RDATA type to be used when generating signing-state
records. The default is 65534.

This parameter may be removed in a future version,
once there is a standard type.

Signing-state records are used internally by named to track
the current state of a zone-signing process, i.e., whether it is
still active or has been completed. The records can be inspected
using the command rndc signing -list zone. Once named has
finished signing a zone with a particular key, the signing-state
record associated with that key can be removed from the zone by
running rndc signing -clear keyid/algorithm zone. To clear all of
the completed signing-state records for a zone, use
rndc signing -clear all zone.

	min-refresh-time; max-refresh-time; min-retry-time; max-retry-time

	These options control the server’s behavior on refreshing a zone
(querying for SOA changes) or retrying failed transfers. Usually the
SOA values for the zone are used, up to a hard-coded maximum expiry
of 24 weeks. However, these values are set by the primary, giving
secondary server administrators little control over their contents.

These options allow the administrator to set a minimum and maximum
refresh and retry time in seconds per-zone, per-view, or globally.
These options are valid for secondary and stub zones, and clamp the SOA
refresh and retry times to the specified values.

The following defaults apply: min-refresh-time 300 seconds,
max-refresh-time 2419200 seconds (4 weeks), min-retry-time
500 seconds, and max-retry-time 1209600 seconds (2 weeks).

	edns-udp-size

	This sets the maximum advertised EDNS UDP buffer size, in bytes, to control
the size of packets received from authoritative servers in response
to recursive queries. Valid values are 512 to 4096; values outside
this range are silently adjusted to the nearest value within it.
The default value is 4096.

The usual reason for setting edns-udp-size to a non-default value
is to get UDP answers to pass through broken firewalls that block
fragmented packets and/or block UDP DNS packets that are greater than
512 bytes.

When named first queries a remote server, it advertises a UDP
buffer size of 512, as this has the greatest chance of success on the
first try.

If the initial query is successful with EDNS advertising a buffer
size of 512, then named switches to advertising a buffer size
of 4096 bytes (unless edns-udp-size is lower, in which case the
latter will be used).

Query timeouts observed for any given server affect the buffer
size advertised in queries sent to that server. Depending on
observed packet dropping patterns, the advertised buffer size is
lowered to 1432 bytes, 1232 bytes, 512 bytes, or the size of the
largest UDP response ever received from a given server, and then
clamped to the <512, edns-udp-size> range. Per-server EDNS
statistics are only retained in memory for the lifetime of a given
server’s ADB entry.

(The values 1232 and 1432 are chosen to allow for an
IPv4-/IPv6-encapsulated UDP message to be sent without fragmentation at the
minimum MTU sizes for Ethernet and IPv6 networks.)

Any server-specific edns-udp-size setting has precedence over all
the above rules.

	max-udp-size

	This sets the maximum EDNS UDP message size that named sends, in bytes.
Valid values are 512 to 4096; values outside this range are
silently adjusted to the nearest value within it. The default value
is 4096.

This value applies to responses sent by a server; to set the
advertised buffer size in queries, see edns-udp-size.

The usual reason for setting max-udp-size to a non-default value
is to allow UDP answers to pass through broken firewalls that block
fragmented packets and/or block UDP packets that are greater than 512
bytes. This is independent of the advertised receive buffer
(edns-udp-size).

Setting this to a low value encourages additional TCP traffic to
the name server.

	masterfile-format

	This specifies the file format of zone files (see Additional File Formats).
The default value is text, which
is the standard textual representation, except for secondary zones, in
which the default value is raw. Files in formats other than
text are typically expected to be generated by the
named-compilezone tool, or dumped by named.

Note that when a zone file in a format other than text is
loaded, named may omit some of the checks which are
performed for a file in text format. In particular,
check-names checks do not apply for the raw format. This
means a zone file in the raw format must be generated with the
same check level as that specified in the named configuration
file. Also, map format files are loaded directly into memory via
memory mapping, with only minimal checking.

This statement sets the masterfile-format for all zones, but can
be overridden on a per-zone or per-view basis by including a
masterfile-format statement within the zone or view block
in the configuration file.

	masterfile-style

	This specifies the formatting of zone files during dump, when the
masterfile-format is text. This option is ignored with any
other masterfile-format.

When set to relative, records are printed in a multi-line format,
with owner names expressed relative to a shared origin. When set to
full, records are printed in a single-line format with absolute
owner names. The full format is most suitable when a zone file
needs to be processed automatically by a script. The relative
format is more human-readable, and is thus suitable when a zone is to
be edited by hand. The default is relative.

	max-recursion-depth

	This sets the maximum number of levels of recursion that are permitted at
any one time while servicing a recursive query. Resolving a name may
require looking up a name server address, which in turn requires
resolving another name, etc.; if the number of recursions exceeds
this value, the recursive query is terminated and returns SERVFAIL.
The default is 7.

	max-recursion-queries

	This sets the maximum number of iterative queries that may be sent while
servicing a recursive query. If more queries are sent, the recursive
query is terminated and returns SERVFAIL. The default is 75.

	notify-delay

	This sets the delay, in seconds, between sending sets of NOTIFY messages for a
zone. The default is 5 seconds.

The overall rate at which NOTIFY messages are sent for all zones is
controlled by serial-query-rate.

	max-rsa-exponent-size

	This sets the maximum RSA exponent size, in bits, that is accepted when
validating. Valid values are 35 to 4096 bits. The default, zero, is
also accepted and is equivalent to 4096.

	prefetch

	When a query is received for cached data which is to expire shortly,
named can refresh the data from the authoritative server
immediately, ensuring that the cache always has an answer available.

prefetch specifies the “trigger” TTL value at which prefetch
of the current query takes place; when a cache record with a
lower TTL value is encountered during query processing, it is
refreshed. Valid trigger TTL values are 1 to 10 seconds. Values
larger than 10 seconds are silently reduced to 10. Setting a
trigger TTL to zero causes prefetch to be disabled. The default
trigger TTL is 2.

An optional second argument specifies the “eligibility” TTL: the
smallest original TTL value that is accepted for a record to
be eligible for prefetching. The eligibility TTL must be at least six
seconds longer than the trigger TTL; if not, named
silently adjusts it upward. The default eligibility TTL is 9.

	v6-bias

	When determining the next name server to try, this indicates by how many
milliseconds to prefer IPv6 name servers. The default is 50
milliseconds.

4.2.14.15. Built-in Server Information Zones

The server provides some helpful diagnostic information through a number
of built-in zones under the pseudo-top-level-domain bind in the
CHAOS class. These zones are part of a built-in view
(see view Statement Grammar) of class CHAOS, which is
separate from the default view of class IN. Most global
configuration options (allow-query, etc.) apply to this view,
but some are locally overridden: notify, recursion, and
allow-new-zones are always set to no, and rate-limit is set
to allow three responses per second.

To disable these zones, use the options below or hide the
built-in CHAOS view by defining an explicit view of class CHAOS
that matches all clients.

	version

	This is the version the server should report via a query of the name
version.bind with type TXT and class CHAOS. The default is
the real version number of this server. Specifying version none
disables processing of the queries.

Setting version to any value (including none) also disables
queries for authors.bind TXT CH.

	hostname

	This is the hostname the server should report via a query of the name
hostname.bind with type TXT and class CHAOS. This defaults
to the hostname of the machine hosting the name server, as found by
the gethostname() function. The primary purpose of such queries is to
identify which of a group of anycast servers is actually answering
the queries. Specifying hostname none; disables processing of
the queries.

	server-id

	This is the ID the server should report when receiving a Name Server
Identifier (NSID) query, or a query of the name ID.SERVER with
type TXT and class CHAOS. The primary purpose of such queries is
to identify which of a group of anycast servers is actually answering
the queries. Specifying server-id none; disables processing of
the queries. Specifying server-id hostname; causes named
to use the hostname as found by the gethostname() function. The
default server-id is none.

4.2.14.16. Built-in Empty Zones

The named server has some built-in empty zones, for SOA and NS records
only. These are for zones that should normally be answered locally and for
which queries should not be sent to the Internet’s root servers. The
official servers that cover these namespaces return NXDOMAIN responses
to these queries. In particular, these cover the reverse namespaces for
addresses from RFC 1918 [https://tools.ietf.org/html/rfc1918.html], RFC 4193 [https://tools.ietf.org/html/rfc4193.html], RFC 5737 [https://tools.ietf.org/html/rfc5737.html], and RFC 6598 [https://tools.ietf.org/html/rfc6598.html]. They also
include the reverse namespace for the IPv6 local address (locally assigned),
IPv6 link local addresses, the IPv6 loopback address, and the IPv6
unknown address.

The server attempts to determine if a built-in zone already exists
or is active (covered by a forward-only forwarding declaration) and does
not create an empty zone if either is true.

The current list of empty zones is:

	10.IN-ADDR.ARPA

	16.172.IN-ADDR.ARPA

	17.172.IN-ADDR.ARPA

	18.172.IN-ADDR.ARPA

	19.172.IN-ADDR.ARPA

	20.172.IN-ADDR.ARPA

	21.172.IN-ADDR.ARPA

	22.172.IN-ADDR.ARPA

	23.172.IN-ADDR.ARPA

	24.172.IN-ADDR.ARPA

	25.172.IN-ADDR.ARPA

	26.172.IN-ADDR.ARPA

	27.172.IN-ADDR.ARPA

	28.172.IN-ADDR.ARPA

	29.172.IN-ADDR.ARPA

	30.172.IN-ADDR.ARPA

	31.172.IN-ADDR.ARPA

	168.192.IN-ADDR.ARPA

	64.100.IN-ADDR.ARPA

	65.100.IN-ADDR.ARPA

	66.100.IN-ADDR.ARPA

	67.100.IN-ADDR.ARPA

	68.100.IN-ADDR.ARPA

	69.100.IN-ADDR.ARPA

	70.100.IN-ADDR.ARPA

	71.100.IN-ADDR.ARPA

	72.100.IN-ADDR.ARPA

	73.100.IN-ADDR.ARPA

	74.100.IN-ADDR.ARPA

	75.100.IN-ADDR.ARPA

	76.100.IN-ADDR.ARPA

	77.100.IN-ADDR.ARPA

	78.100.IN-ADDR.ARPA

	79.100.IN-ADDR.ARPA

	80.100.IN-ADDR.ARPA

	81.100.IN-ADDR.ARPA

	82.100.IN-ADDR.ARPA

	83.100.IN-ADDR.ARPA

	84.100.IN-ADDR.ARPA

	85.100.IN-ADDR.ARPA

	86.100.IN-ADDR.ARPA

	87.100.IN-ADDR.ARPA

	88.100.IN-ADDR.ARPA

	89.100.IN-ADDR.ARPA

	90.100.IN-ADDR.ARPA

	91.100.IN-ADDR.ARPA

	92.100.IN-ADDR.ARPA

	93.100.IN-ADDR.ARPA

	94.100.IN-ADDR.ARPA

	95.100.IN-ADDR.ARPA

	96.100.IN-ADDR.ARPA

	97.100.IN-ADDR.ARPA

	98.100.IN-ADDR.ARPA

	99.100.IN-ADDR.ARPA

	100.100.IN-ADDR.ARPA

	101.100.IN-ADDR.ARPA

	102.100.IN-ADDR.ARPA

	103.100.IN-ADDR.ARPA

	104.100.IN-ADDR.ARPA

	105.100.IN-ADDR.ARPA

	106.100.IN-ADDR.ARPA

	107.100.IN-ADDR.ARPA

	108.100.IN-ADDR.ARPA

	109.100.IN-ADDR.ARPA

	110.100.IN-ADDR.ARPA

	111.100.IN-ADDR.ARPA

	112.100.IN-ADDR.ARPA

	113.100.IN-ADDR.ARPA

	114.100.IN-ADDR.ARPA

	115.100.IN-ADDR.ARPA

	116.100.IN-ADDR.ARPA

	117.100.IN-ADDR.ARPA

	118.100.IN-ADDR.ARPA

	119.100.IN-ADDR.ARPA

	120.100.IN-ADDR.ARPA

	121.100.IN-ADDR.ARPA

	122.100.IN-ADDR.ARPA

	123.100.IN-ADDR.ARPA

	124.100.IN-ADDR.ARPA

	125.100.IN-ADDR.ARPA

	126.100.IN-ADDR.ARPA

	127.100.IN-ADDR.ARPA

	0.IN-ADDR.ARPA

	127.IN-ADDR.ARPA

	254.169.IN-ADDR.ARPA

	2.0.192.IN-ADDR.ARPA

	100.51.198.IN-ADDR.ARPA

	113.0.203.IN-ADDR.ARPA

	255.255.255.255.IN-ADDR.ARPA

	0.IP6.ARPA

	1.0.IP6.ARPA

	8.B.D.0.1.0.0.2.IP6.ARPA

	D.F.IP6.ARPA

	8.E.F.IP6.ARPA

	9.E.F.IP6.ARPA

	A.E.F.IP6.ARPA

	B.E.F.IP6.ARPA

	EMPTY.AS112.ARPA

	HOME.ARPA

Empty zones can be set at the view level and only apply to views of
class IN. Disabled empty zones are only inherited from options if there
are no disabled empty zones specified at the view level. To override the
options list of disabled zones, disable the root zone at the
view level. For example:

disable-empty-zone ".";

If using the address ranges covered here,
reverse zones covering the addresses should already be in place. In practice this
appears to not be the case, with many queries being made to the
infrastructure servers for names in these spaces. So many, in fact, that
sacrificial servers had to be deployed to channel the query load
away from the infrastructure servers.

Note

The real parent servers for these zones should disable all empty zones
under the parent zone they serve. For the real root servers, this is
all built-in empty zones. This enables them to return referrals
to deeper in the tree.

	empty-server

	This specifies the server name that appears in the returned SOA record for
empty zones. If none is specified, the zone’s name is used.

	empty-contact

	This specifies the contact name that appears in the returned SOA record for
empty zones. If none is specified, “.” is used.

	empty-zones-enable

	This enables or disables all empty zones. By default, they are enabled.

	disable-empty-zone

	This disables individual empty zones. By default, none are disabled. This
option can be specified multiple times.

4.2.14.17. Content Filtering

BIND 9 provides the ability to filter out responses from external
DNS servers containing certain types of data in the answer section.
Specifically, it can reject address (A or AAAA) records if the
corresponding IPv4 or IPv6 addresses match the given
address_match_list of the deny-answer-addresses option. It can
also reject CNAME or DNAME records if the “alias” name (i.e., the CNAME
alias or the substituted query name due to DNAME) matches the given
namelist of the deny-answer-aliases option, where “match” means
the alias name is a subdomain of one of the name_list elements. If
the optional namelist is specified with except-from, records
whose query name matches the list are accepted regardless of the
filter setting. Likewise, if the alias name is a subdomain of the
corresponding zone, the deny-answer-aliases filter does not apply;
for example, even if “example.com” is specified for
deny-answer-aliases,

www.example.com. CNAME xxx.example.com.

returned by an “example.com” server is accepted.

In the address_match_list of the deny-answer-addresses option,
only ip_addr and ip_prefix are meaningful; any key_id is
silently ignored.

If a response message is rejected due to the filtering, the entire
message is discarded without being cached, and a SERVFAIL error is
returned to the client.

This filtering is intended to prevent “DNS rebinding attacks,” in which
an attacker, in response to a query for a domain name the attacker
controls, returns an IP address within the user’s own network or an alias name
within the user’s own domain. A naive web browser or script could then serve
as an unintended proxy, allowing the attacker to get access to an
internal node of the local network that could not be externally accessed
otherwise. See the paper available at
https://dl.acm.org/doi/10.1145/1315245.1315298 for more details
about these attacks.

For example, with a domain named “example.net” and an internal
network using an IPv4 prefix 192.0.2.0/24, an administrator might specify the
following rules:

deny-answer-addresses { 192.0.2.0/24; } except-from { "example.net"; };
deny-answer-aliases { "example.net"; };

If an external attacker let a web browser in the local network look up
an IPv4 address of “attacker.example.com”, the attacker’s DNS server
would return a response like this:

attacker.example.com. A 192.0.2.1

in the answer section. Since the rdata of this record (the IPv4 address)
matches the specified prefix 192.0.2.0/24, this response would be
ignored.

On the other hand, if the browser looked up a legitimate internal web
server “www.example.net” and the following response were returned to the
BIND 9 server:

www.example.net. A 192.0.2.2

it would be accepted, since the owner name “www.example.net” matches the
except-from element, “example.net”.

Note that this is not really an attack on the DNS per se. In fact, there
is nothing wrong with having an “external” name mapped to an “internal”
IP address or domain name from the DNS point of view; it might actually
be provided for a legitimate purpose, such as for debugging. As long as
the mapping is provided by the correct owner, it either is not possible or does
not make sense to detect whether the intent of the mapping is legitimate
within the DNS. The “rebinding” attack must primarily be
protected at the application that uses the DNS. For a large site,
however, it may be difficult to protect all possible applications at
once. This filtering feature is provided only to help such an
operational environment; turning it on is generally discouraged
unless there is no other choice and the attack is a
real threat to applications.

Care should be particularly taken if using this option for
addresses within 127.0.0.0/8. These addresses are obviously “internal,”
but many applications conventionally rely on a DNS mapping from some
name to such an address. Filtering out DNS records containing this
address spuriously can break such applications.

4.2.14.18. Response Policy Zone (RPZ) Rewriting

BIND 9 includes a limited mechanism to modify DNS responses for requests
analogous to email anti-spam DNS rejection lists. Responses can be changed to
deny the existence of domains (NXDOMAIN), deny the existence of IP
addresses for domains (NODATA), or contain other IP addresses or data.

Response policy zones are named in the response-policy option for
the view, or among the global options if there is no response-policy
option for the view. Response policy zones are ordinary DNS zones
containing RRsets that can be queried normally if allowed. It is usually
best to restrict those queries with something like
allow-query { localhost; };. Note that zones using
masterfile-format map cannot be used as policy zones.

A response-policy option can support multiple policy zones. To
maximize performance, a radix tree is used to quickly identify response
policy zones containing triggers that match the current query. This
imposes an upper limit of 64 on the number of policy zones in a single
response-policy option; more than that is a configuration error.

Rules encoded in response policy zones are processed after those defined in
Access Control. All queries from clients which are not permitted access
to the resolver are answered with a status code of REFUSED, regardless of
configured RPZ rules.

Five policy triggers can be encoded in RPZ records.

	RPZ-CLIENT-IP

	IP records are triggered by the IP address of the DNS client. Client
IP address triggers are encoded in records that have owner names that
are subdomains of rpz-client-ip, relativized to the policy zone
origin name, and that encode an address or address block. IPv4 addresses
are represented as prefixlength.B4.B3.B2.B1.rpz-client-ip. The
IPv4 prefix length must be between 1 and 32. All four bytes - B4, B3,
B2, and B1 - must be present. B4 is the decimal value of the least
significant byte of the IPv4 address as in IN-ADDR.ARPA.

IPv6 addresses are encoded in a format similar to the standard IPv6
text representation,
prefixlength.W8.W7.W6.W5.W4.W3.W2.W1.rpz-client-ip. Each of
W8,…,W1 is a one- to four-digit hexadecimal number representing 16
bits of the IPv6 address as in the standard text representation of
IPv6 addresses, but reversed as in IP6.ARPA. (Note that this
representation of IPv6 addresses is different from IP6.ARPA, where each
hex digit occupies a label.) All 8 words must be present except when
one set of consecutive zero words is replaced with .zz., analogous
to double colons (::) in standard IPv6 text encodings. The IPv6
prefix length must be between 1 and 128.

	QNAME

	QNAME policy records are triggered by query names of requests and
targets of CNAME records resolved to generate the response. The owner
name of a QNAME policy record is the query name relativized to the
policy zone.

	RPZ-IP

	IP triggers are IP addresses in an A or AAAA record in the ANSWER
section of a response. They are encoded like client-IP triggers,
except as subdomains of rpz-ip.

	RPZ-NSDNAME

	NSDNAME triggers match names of authoritative servers for the query name, a
parent of the query name, a CNAME for the query name, or a parent of a CNAME.
They are encoded as subdomains of rpz-nsdname, relativized
to the RPZ origin name. NSIP triggers match IP addresses in A and AAAA
RRsets for domains that can be checked against NSDNAME policy records. The
nsdname-enable phrase turns NSDNAME triggers off or on for a single
policy zone or for all zones.

If authoritative name servers for the query name are not yet known, named
recursively looks up the authoritative servers for the query name before
applying an RPZ-NSDNAME rule, which can cause a processing delay. To speed up
processing at the cost of precision, the nsdname-wait-recurse option can
be used; when set to no, RPZ-NSDNAME rules are only applied when
authoritative servers for the query name have already been looked up and
cached. If authoritative servers for the query name are not in the cache,
the RPZ-NSDNAME rule is ignored, but the authoritative servers for
the query name are looked up in the background and the rule is
applied to subsequent queries. The default is yes,
meaning RPZ-NSDNAME rules are always applied, even if authoritative
servers for the query name need to be looked up first.

	RPZ-NSIP

	NSIP triggers match the IP addresses of authoritative servers. They
are encoded like IP triggers, except as subdomains of rpz-nsip.
NSDNAME and NSIP triggers are checked only for names with at least
min-ns-dots dots. The default value of min-ns-dots is 1, to
exclude top-level domains. The nsip-enable phrase turns NSIP
triggers off or on for a single policy zone or for all zones.

If a name server’s IP address is not yet known, named
recursively looks up the IP address before applying an RPZ-NSIP rule,
which can cause a processing delay. To speed up processing at the cost
of precision, the nsip-wait-recurse option can be used; when set
to no, RPZ-NSIP rules are only applied when a name server’s
IP address has already been looked up and cached. If a server’s IP
address is not in the cache, the RPZ-NSIP rule is ignored,
but the address is looked up in the background and the rule
is applied to subsequent queries. The default is yes,
meaning RPZ-NSIP rules are always applied, even if an address
needs to be looked up first.

The query response is checked against all response policy zones, so two
or more policy records can be triggered by a response. Because DNS
responses are rewritten according to at most one policy record, a single
record encoding an action (other than DISABLED actions) must be
chosen. Triggers, or the records that encode them, are chosen for
rewriting in the following order:

	Choose the triggered record in the zone that appears first in the
response-policy option.

	Prefer CLIENT-IP to QNAME to IP to NSDNAME to NSIP triggers in a
single zone.

	Among NSDNAME triggers, prefer the trigger that matches the smallest
name under the DNSSEC ordering.

	Among IP or NSIP triggers, prefer the trigger with the longest
prefix.

	Among triggers with the same prefix length, prefer the IP or NSIP
trigger that matches the smallest IP address.

When the processing of a response is restarted to resolve DNAME or CNAME
records and a policy record set has not been triggered, all response
policy zones are again consulted for the DNAME or CNAME names and
addresses.

RPZ record sets are any types of DNS record, except DNAME or DNSSEC, that
encode actions or responses to individual queries. Any of the policies
can be used with any of the triggers. For example, while the
TCP-only policy is commonly used with client-IP triggers, it can
be used with any type of trigger to force the use of TCP for responses
with owner names in a zone.

	PASSTHRU

	The auto-acceptance policy is specified by a CNAME whose target is
rpz-passthru. It causes the response to not be rewritten and is
most often used to “poke holes” in policies for CIDR blocks.

	DROP

	The auto-rejection policy is specified by a CNAME whose target is
rpz-drop. It causes the response to be discarded. Nothing is sent
to the DNS client.

	TCP-Only

	The “slip” policy is specified by a CNAME whose target is
rpz-tcp-only. It changes UDP responses to short, truncated DNS
responses that require the DNS client to try again with TCP. It is
used to mitigate distributed DNS reflection attacks.

	NXDOMAIN

	The “domain undefined” response is encoded by a CNAME whose target is
the root domain (.).

	NODATA

	The empty set of resource records is specified by a CNAME whose target
is the wildcard top-level domain (*.). It rewrites the response to
NODATA or ANCOUNT=0.

	Local Data

	A set of ordinary DNS records can be used to answer queries. Queries
for record types not in the set are answered with NODATA.

A special form of local data is a CNAME whose target is a wildcard
such as *.example.com. It is used as if an ordinary CNAME after
the asterisk (*) has been replaced with the query name.
This special form is useful for query logging in the walled garden’s
authoritative DNS server.

All of the actions specified in all of the individual records in a
policy zone can be overridden with a policy clause in the
response-policy option. An organization using a policy zone provided
by another organization might use this mechanism to redirect domains to
its own walled garden.

	GIVEN

	The placeholder policy says “do not override but perform the action
specified in the zone.”

	DISABLED

	The testing override policy causes policy zone records to do nothing
but log what they would have done if the policy zone were not
disabled. The response to the DNS query is written (or not)
according to any triggered policy records that are not disabled.
Disabled policy zones should appear first, because they are often
not logged if a higher-precedence trigger is found first.

	PASSTHRU; DROP; TCP-Only; NXDOMAIN; NODATA

	These settings each override the corresponding per-record policy.

	CNAME domain

	This causes all RPZ policy records to act as if they were “cname domain”
records.

By default, the actions encoded in a response policy zone are applied
only to queries that ask for recursion (RD=1). That default can be
changed for a single policy zone, or for all response policy zones in a view,
with a recursive-only no clause. This feature is useful for serving
the same zone files both inside and outside an RFC 1918 [https://tools.ietf.org/html/rfc1918.html] cloud and using
RPZ to delete answers that would otherwise contain RFC 1918 [https://tools.ietf.org/html/rfc1918.html] values on
the externally visible name server or view.

Also by default, RPZ actions are applied only to DNS requests that
either do not request DNSSEC metadata (DO=0) or when no DNSSEC records
are available for the requested name in the original zone (not the response
policy zone). This default can be changed for all response policy zones
in a view with a break-dnssec yes clause. In that case, RPZ actions
are applied regardless of DNSSEC. The name of the clause option reflects
the fact that results rewritten by RPZ actions cannot verify.

No DNS records are needed for a QNAME or Client-IP trigger; the name or
IP address itself is sufficient, so in principle the query name need not
be recursively resolved. However, not resolving the requested name can
leak the fact that response policy rewriting is in use, and that the name
is listed in a policy zone, to operators of servers for listed names. To
prevent that information leak, by default any recursion needed for a
request is done before any policy triggers are considered. Because
listed domains often have slow authoritative servers, this behavior can
cost significant time. The qname-wait-recurse yes option overrides
the default and enables that behavior when recursion cannot change a
non-error response. The option does not affect QNAME or client-IP
triggers in policy zones listed after other zones containing IP, NSIP,
and NSDNAME triggers, because those may depend on the A, AAAA, and NS
records that would be found during recursive resolution. It also does
not affect DNSSEC requests (DO=1) unless break-dnssec yes is in use,
because the response would depend on whether RRSIG records were
found during resolution. Using this option can cause error responses
such as SERVFAIL to appear to be rewritten, since no recursion is being
done to discover problems at the authoritative server.

The dnsrps-enable yes option turns on the DNS Response Policy Service
(DNSRPS) interface, if it has been compiled in named using
configure --enable-dnsrps.

The dnsrps-options block provides additional RPZ configuration
settings, which are passed through to the DNSRPS provider library.
Multiple DNSRPS settings in an dnsrps-options string should be
separated with semi-colons (;). The DNSRPS provider, librpz, is passed a
configuration string consisting of the dnsrps-options text,
concatenated with settings derived from the response-policy
statement.

Note: the dnsrps-options text should only include configuration
settings that are specific to the DNSRPS provider. For example, the
DNSRPS provider from Farsight Security takes options such as
dnsrpzd-conf, dnsrpzd-sock, and dnzrpzd-args (for details of
these options, see the librpz documentation). Other RPZ
configuration settings could be included in dnsrps-options as well,
but if named were switched back to traditional RPZ by setting
dnsrps-enable to “no”, those options would be ignored.

The TTL of a record modified by RPZ policies is set from the TTL of the
relevant record in the policy zone. It is then limited to a maximum value.
The max-policy-ttl clause changes the maximum number of seconds from its
default of 5. For convenience, TTL-style time-unit suffixes may be used
to specify the value. It also accepts ISO 8601 duration formats.

For example, an administrator might use this option statement:

response-policy { zone "badlist"; };

and this zone statement:

zone "badlist" {type primary; file "primary/badlist"; allow-query {none;}; };

with this zone file:

$TTL 1H
@ SOA LOCALHOST. named-mgr.example.com (1 1h 15m 30d 2h)
 NS LOCALHOST.

; QNAME policy records. There are no periods (.) after the owner names.
nxdomain.domain.com CNAME . ; NXDOMAIN policy
*.nxdomain.domain.com CNAME . ; NXDOMAIN policy
nodata.domain.com CNAME *. ; NODATA policy
*.nodata.domain.com CNAME *. ; NODATA policy
bad.domain.com A 10.0.0.1 ; redirect to a walled garden
 AAAA 2001:2::1
bzone.domain.com CNAME garden.example.com.

; do not rewrite (PASSTHRU) OK.DOMAIN.COM
ok.domain.com CNAME rpz-passthru.

; redirect x.bzone.domain.com to x.bzone.domain.com.garden.example.com
*.bzone.domain.com CNAME *.garden.example.com.

; IP policy records that rewrite all responses containing A records in 127/8
; except 127.0.0.1
8.0.0.0.127.rpz-ip CNAME .
32.1.0.0.127.rpz-ip CNAME rpz-passthru.

; NSDNAME and NSIP policy records
ns.domain.com.rpz-nsdname CNAME .
48.zz.2.2001.rpz-nsip CNAME .

; auto-reject and auto-accept some DNS clients
112.zz.2001.rpz-client-ip CNAME rpz-drop.
8.0.0.0.127.rpz-client-ip CNAME rpz-drop.

; force some DNS clients and responses in the example.com zone to TCP
16.0.0.1.10.rpz-client-ip CNAME rpz-tcp-only.
example.com CNAME rpz-tcp-only.
*.example.com CNAME rpz-tcp-only.

RPZ can affect server performance. Each configured response policy zone
requires the server to perform one to four additional database lookups
before a query can be answered. For example, a DNS server with four
policy zones, each with all four kinds of response triggers (QNAME, IP,
NSIP, and NSDNAME), requires a total of 17 times as many database lookups
as a similar DNS server with no response policy zones. A BIND 9 server
with adequate memory and one response policy zone with QNAME and IP
triggers might achieve a maximum queries-per-second (QPS) rate about 20%
lower. A server with four response policy zones with QNAME and IP
triggers might have a maximum QPS rate about 50% lower.

Responses rewritten by RPZ are counted in the RPZRewrites
statistics.

The log clause can be used to optionally turn off rewrite logging
for a particular response policy zone. By default, all rewrites are
logged.

The add-soa option controls whether the RPZ’s SOA record is added to
the section for traceback of changes from this zone.
This can be set at the individual policy zone level or at the
response-policy level. The default is yes.

Updates to RPZ zones are processed asynchronously; if there is more than
one update pending they are bundled together. If an update to a RPZ zone
(for example, via IXFR) happens less than min-update-interval
seconds after the most recent update, the changes are not
carried out until this interval has elapsed. The default is 60
seconds. For convenience, TTL-style time-unit suffixes may be used to
specify the value. It also accepts ISO 8601 duration formats.

4.2.14.19. Response Rate Limiting

Excessive, almost-identical UDP responses can be controlled by
configuring a rate-limit clause in an options or view
statement. This mechanism keeps authoritative BIND 9 from being used to
amplify reflection denial-of-service (DoS) attacks. Short, truncated
(TC=1) responses can be sent to provide rate-limited responses to
legitimate clients within a range of forged, attacked IP addresses.
Legitimate clients react to dropped or truncated responses by retrying
with UDP or with TCP, respectively.

This mechanism is intended for authoritative DNS servers. It can be used
on recursive servers, but can slow applications such as SMTP servers
(mail receivers) and HTTP clients (web browsers) that repeatedly request
the same domains. When possible, closing “open” recursive servers is
better.

Response rate limiting uses a “credit” or “token bucket” scheme. Each
combination of identical response and client has a conceptual “account”
that earns a specified number of credits every second. A prospective
response debits its account by one. Responses are dropped or truncated
while the account is negative. Responses are tracked within a rolling
window of time which defaults to 15 seconds, but which can be configured with
the window option to any value from 1 to 3600 seconds (1 hour). The
account cannot become more positive than the per-second limit or more
negative than window times the per-second limit. When the specified
number of credits for a class of responses is set to 0, those responses
are not rate-limited.

The notions of “identical response” and “DNS client” for rate limiting
are not simplistic. All responses to an address block are counted as if
to a single client. The prefix lengths of address blocks are specified
with ipv4-prefix-length (default 24) and ipv6-prefix-length
(default 56).

All non-empty responses for a valid domain name (qname) and record type
(qtype) are identical and have a limit specified with
responses-per-second (default 0 or no limit). All empty (NODATA)
responses for a valid domain, regardless of query type, are identical.
Responses in the NODATA class are limited by nodata-per-second
(default responses-per-second). Requests for any and all undefined
subdomains of a given valid domain result in NXDOMAIN errors, and are
identical regardless of query type. They are limited by
nxdomains-per-second (default responses-per-second). This
controls some attacks using random names, but can be relaxed or turned
off (set to 0) on servers that expect many legitimate NXDOMAIN
responses, such as from anti-spam rejection lists. Referrals or delegations
to the server of a given domain are identical and are limited by
referrals-per-second (default responses-per-second).

Responses generated from local wildcards are counted and limited as if
they were for the parent domain name. This controls flooding using
random.wild.example.com.

All requests that result in DNS errors other than NXDOMAIN, such as
SERVFAIL and FORMERR, are identical regardless of requested name (qname)
or record type (qtype). This controls attacks using invalid requests or
distant, broken authoritative servers. By default the limit on errors is
the same as the responses-per-second value, but it can be set
separately with errors-per-second.

Many attacks using DNS involve UDP requests with forged source
addresses. Rate limiting prevents the use of BIND 9 to flood a network
with responses to requests with forged source addresses, but could let a
third party block responses to legitimate requests. There is a mechanism
that can answer some legitimate requests from a client whose address is
being forged in a flood. Setting slip to 2 (its default) causes
every other UDP request to be answered with a small truncated (TC=1)
response. The small size and reduced frequency, and resulting lack of
amplification, of “slipped” responses make them unattractive for
reflection DoS attacks. slip must be between 0 and 10. A value of 0
does not “slip”; no truncated responses are sent due to rate limiting. Rather,
all responses are dropped. A value of 1 causes every response to slip;
values between 2 and 10 cause every nth response to slip. Some error
responses, including REFUSED and SERVFAIL, cannot be replaced with
truncated responses and are instead leaked at the slip rate.

(Note: dropped responses from an authoritative server may reduce the
difficulty of a third party successfully forging a response to a
recursive resolver. The best security against forged responses is for
authoritative operators to sign their zones using DNSSEC and for
resolver operators to validate the responses. When this is not an
option, operators who are more concerned with response integrity than
with flood mitigation may consider setting slip to 1, causing all
rate-limited responses to be truncated rather than dropped. This reduces
the effectiveness of rate-limiting against reflection attacks.)

When the approximate query-per-second rate exceeds the qps-scale
value, the responses-per-second, errors-per-second,
nxdomains-per-second, and all-per-second values are reduced by
the ratio of the current rate to the qps-scale value. This feature
can tighten defenses during attacks. For example, with
qps-scale 250; responses-per-second 20; and a total query rate of
1000 queries/second for all queries from all DNS clients including via
TCP, then the effective responses/second limit changes to (250/1000)*20,
or 5. Responses sent via TCP are not limited but are counted to compute
the query-per-second rate.

Communities of DNS clients can be given their own parameters or no
rate limiting by putting rate-limit statements in view statements
instead of in the global option statement. A rate-limit statement
in a view replaces, rather than supplements, a rate-limit
statement among the main options. DNS clients within a view can be
exempted from rate limits with the exempt-clients clause.

UDP responses of all kinds can be limited with the all-per-second
phrase. This rate limiting is unlike the rate limiting provided by
responses-per-second, errors-per-second, and
nxdomains-per-second on a DNS server, which are often invisible to
the victim of a DNS reflection attack. Unless the forged requests of the
attack are the same as the legitimate requests of the victim, the
victim’s requests are not affected. Responses affected by an
all-per-second limit are always dropped; the slip value has no
effect. An all-per-second limit should be at least 4 times as large
as the other limits, because single DNS clients often send bursts of
legitimate requests. For example, the receipt of a single mail message
can prompt requests from an SMTP server for NS, PTR, A, and AAAA records
as the incoming SMTP/TCP/IP connection is considered. The SMTP server
can need additional NS, A, AAAA, MX, TXT, and SPF records as it
considers the SMTP Mail From command. Web browsers often repeatedly
resolve the same names that are duplicated in HTML tags in a page.
all-per-second is similar to the rate limiting offered by firewalls
but is often inferior. Attacks that justify ignoring the contents of DNS
responses are likely to be attacks on the DNS server itself. They
usually should be discarded before the DNS server spends resources making
TCP connections or parsing DNS requests, but that rate limiting must be
done before the DNS server sees the requests.

The maximum size of the table used to track requests and rate-limit
responses is set with max-table-size. Each entry in the table is
between 40 and 80 bytes. The table needs approximately as many entries
as the number of requests received per second. The default is 20,000. To
reduce the cold start of growing the table, min-table-size (default 500)
can set the minimum table size. Enable rate-limit category
logging to monitor expansions of the table and inform choices for the
initial and maximum table size.

Use log-only yes to test rate-limiting parameters without actually
dropping any requests.

Responses dropped by rate limits are included in the RateDropped and
QryDropped statistics. Responses that are truncated by rate limits are
included in RateSlipped and RespTruncated.

4.2.14.20. NXDOMAIN Redirection

named supports NXDOMAIN redirection via two methods:

	Redirect zone (zone Statement Grammar)

	Redirect namespace

With either method, when named gets an NXDOMAIN response it examines a
separate namespace to see if the NXDOMAIN response should be replaced
with an alternative response.

With a redirect zone (zone "." { type redirect; };), the data used
to replace the NXDOMAIN is held in a single zone which is not part of
the normal namespace. All the redirect information is contained in the
zone; there are no delegations.

With a redirect namespace (option { nxdomain-redirect <suffix> };),
the data used to replace the NXDOMAIN is part of the normal namespace
and is looked up by appending the specified suffix to the original
query name. This roughly doubles the cache required to process
NXDOMAIN responses, as both the original NXDOMAIN response and the
replacement data (or an NXDOMAIN indicating that there is no
replacement) must be stored.

If both a redirect zone and a redirect namespace are configured, the
redirect zone is tried first.

4.2.15. server Statement Grammar

server <netprefix> {
 bogus <boolean>;
 edns <boolean>;
 edns-udp-size <integer>;
 edns-version <integer>;
 keys <server_key>;
 max-udp-size <integer>;
 notify-source (<ipv4_address> | *) [port (<integer> | *)] [
 dscp <integer>];
 notify-source-v6 (<ipv6_address> | *) [port (<integer> | *)]
 [dscp <integer>];
 padding <integer>;
 provide-ixfr <boolean>;
 query-source (([address] (<ipv4_address> | *) [port (
 <integer> | *)]) | ([[address] (<ipv4_address> | *)]
 port (<integer> | *))) [dscp <integer>];
 query-source-v6 (([address] (<ipv6_address> | *) [port (
 <integer> | *)]) | ([[address] (<ipv6_address> | *)]
 port (<integer> | *))) [dscp <integer>];
 request-expire <boolean>;
 request-ixfr <boolean>;
 request-nsid <boolean>;
 send-cookie <boolean>;
 tcp-keepalive <boolean>;
 tcp-only <boolean>;
 transfer-format (many-answers | one-answer);
 transfer-source (<ipv4_address> | *) [port (<integer> | *)] [
 dscp <integer>];
 transfer-source-v6 (<ipv6_address> | *) [port (<integer> | *)
] [dscp <integer>];
 transfers <integer>;
};

4.2.16. server Statement Definition and Usage

The server statement defines characteristics to be associated with a
remote name server. If a prefix length is specified, then a range of
servers is covered. Only the most specific server clause applies,
regardless of the order in named.conf.

The server statement can occur at the top level of the configuration
file or inside a view statement. If a view statement contains
one or more server statements, only those apply to the view and any
top-level ones are ignored. If a view contains no server statements,
any top-level server statements are used as defaults.

If a remote server is giving out bad data, marking it
as bogus prevents further queries to it. The default value of
bogus is no.

The provide-ixfr clause determines whether the local server, acting
as primary, responds with an incremental zone transfer when the given
remote server, a secondary, requests it. If set to yes, incremental
transfer is provided whenever possible. If set to no, all
transfers to the remote server are non-incremental. If not set, the
value of the provide-ixfr option in the view or global options block
is used as a default.

The request-ixfr clause determines whether the local server, acting
as a secondary, requests incremental zone transfers from the given
remote server, a primary. If not set, the value of the request-ixfr
option in the view or global options block is used as a default. It may
also be set in the zone block; if set there, it overrides the
global or view setting for that zone.

IXFR requests to servers that do not support IXFR automatically
fall back to AXFR. Therefore, there is no need to manually list which
servers support IXFR and which ones do not; the global default of
yes should always work. The purpose of the provide-ixfr and
request-ixfr clauses is to make it possible to disable the use of
IXFR even when both primary and secondary claim to support it: for example, if
one of the servers is buggy and crashes or corrupts data when IXFR is
used.

The request-expire clause determines whether the local server, when
acting as a secondary, requests the EDNS EXPIRE value. The EDNS EXPIRE
value indicates the remaining time before the zone data expires and
needs to be refreshed. This is used when a secondary server transfers
a zone from another secondary server; when transferring from the
primary, the expiration timer is set from the EXPIRE field of the SOA
record instead. The default is yes.

The edns clause determines whether the local server attempts to
use EDNS when communicating with the remote server. The default is
yes.

The edns-udp-size option sets the EDNS UDP size that is advertised
by named when querying the remote server. Valid values are 512 to
4096 bytes; values outside this range are silently adjusted to the
nearest value within it. This option is useful when
advertising a different value to this server than the value advertised
globally: for example, when there is a firewall at the remote site that
is blocking large replies. Note: currently, this sets a single UDP size
for all packets sent to the server; named does not deviate from this
value. This differs from the behavior of edns-udp-size in
options or view statements, where it specifies a maximum value.
The server statement behavior may be brought into conformance with
the options/view behavior in future releases.

The edns-version option sets the maximum EDNS VERSION that is
sent to the server(s) by the resolver. The actual EDNS version sent is
still subject to normal EDNS version-negotiation rules (see RFC 6891 [https://tools.ietf.org/html/rfc6891.html]),
the maximum EDNS version supported by the server, and any other
heuristics that indicate that a lower version should be sent. This
option is intended to be used when a remote server reacts badly to a
given EDNS version or higher; it should be set to the highest version
the remote server is known to support. Valid values are 0 to 255; higher
values are silently adjusted. This option is not needed until
higher EDNS versions than 0 are in use.

The max-udp-size option sets the maximum EDNS UDP message size
named sends. Valid values are 512 to 4096 bytes; values outside
this range are silently adjusted. This option is useful when
there is a firewall that is blocking large replies from
named.

The padding option adds EDNS Padding options to outgoing messages,
increasing the packet size to a multiple of the specified block size.
Valid block sizes range from 0 (the default, which disables the use of
EDNS Padding) to 512 bytes. Larger values are reduced to 512, with a
logged warning. Note: this option is not currently compatible with no
TSIG or SIG(0), as the EDNS OPT record containing the padding would have
to be added to the packet after it had already been signed.

The tcp-only option sets the transport protocol to TCP. The default
is to use the UDP transport and to fallback on TCP only when a truncated
response is received.

The tcp-keepalive option adds EDNS TCP keepalive to messages sent
over TCP. Note that currently idle timeouts in responses are ignored.

The server supports two zone transfer methods. The first,
one-answer, uses one DNS message per resource record transferred.
many-answers packs as many resource records as possible into a single
message, which is more efficient.
It is possible to specify which method to use for a server via the
transfer-format option; if not set there, the
transfer-format specified by the options statement is used.

transfers is used to limit the number of concurrent inbound zone
transfers from the specified server. If no transfers clause is
specified, the limit is set according to the transfers-per-ns
option.

The keys clause identifies a key_id defined by the key
statement, to be used for transaction security (see TSIG)
when talking to the remote server. When a request is sent to the remote
server, a request signature is generated using the key specified
here and appended to the message. A request originating from the remote
server is not required to be signed by this key.

Only a single key per server is currently supported.

The transfer-source and transfer-source-v6 clauses specify the
IPv4 and IPv6 source address, respectively, to be used for zone transfer with the
remote server. For an IPv4 remote server, only
transfer-source can be specified. Similarly, for an IPv6 remote
server, only transfer-source-v6 can be specified. For more details,
see the description of transfer-source and transfer-source-v6 in
Zone Transfers.

The notify-source and notify-source-v6 clauses specify the IPv4
and IPv6 source address, respectively, to be used for notify messages sent to remote
servers. For an IPv4 remote server, only notify-source
can be specified. Similarly, for an IPv6 remote server, only
notify-source-v6 can be specified.

The query-source and query-source-v6 clauses specify the IPv4
and IPv6 source address, respectively, to be used for queries sent to remote servers.
For an IPv4 remote server, only query-source can be
specified. Similarly, for an IPv6 remote server, only
query-source-v6 can be specified.

The request-nsid clause determines whether the local server adds
an NSID EDNS option to requests sent to the server. This overrides
request-nsid set at the view or option level.

The send-cookie clause determines whether the local server adds
a COOKIE EDNS option to requests sent to the server. This overrides
send-cookie set at the view or option level. The named server
may determine that COOKIE is not supported by the remote server and not
add a COOKIE EDNS option to requests.

4.2.17. statistics-channels Statement Grammar

statistics-channels {
 inet (<ipv4_address> | <ipv6_address> |
 *) [port (<integer> | *)] [
 allow { <address_match_element>; ...
 }];
};

4.2.18. statistics-channels Statement Definition and Usage

The statistics-channels statement declares communication channels to
be used by system administrators to get access to statistics information
on the name server.

This statement is intended to be flexible to support multiple communication
protocols in the future, but currently only HTTP access is supported. It
requires that BIND 9 be compiled with libxml2 and/or json-c (also known
as libjson0); the statistics-channels statement is still accepted
even if it is built without the library, but any HTTP access fails
with an error.

An inet control channel is a TCP socket listening at the specified
ip_port on the specified ip_addr, which can be an IPv4 or IPv6
address. An ip_addr of * (asterisk) is interpreted as the IPv4
wildcard address; connections are accepted on any of the system’s
IPv4 addresses. To listen on the IPv6 wildcard address, use an
ip_addr of ::.

If no port is specified, port 80 is used for HTTP channels. The asterisk
(*) cannot be used for ip_port.

Attempts to open a statistics channel are restricted by the
optional allow clause. Connections to the statistics channel are
permitted based on the address_match_list. If no allow clause is
present, named accepts connection attempts from any address; since
the statistics may contain sensitive internal information, it is highly
recommended to restrict the source of connection requests appropriately.

If no statistics-channels statement is present, named does not
open any communication channels.

The statistics are available in various formats and views, depending on
the URI used to access them. For example, if the statistics channel is
configured to listen on 127.0.0.1 port 8888, then the statistics are
accessible in XML format at http://127.0.0.1:8888/ or
http://127.0.0.1:8888/xml. A CSS file is included, which can format the
XML statistics into tables when viewed with a stylesheet-capable
browser, and into charts and graphs using the Google Charts API when
using a JavaScript-capable browser.

Broken-out subsets of the statistics can be viewed at
http://127.0.0.1:8888/xml/v3/status (server uptime and last
reconfiguration time), http://127.0.0.1:8888/xml/v3/server (server and
resolver statistics), http://127.0.0.1:8888/xml/v3/zones (zone
statistics), http://127.0.0.1:8888/xml/v3/net (network status and socket
statistics), http://127.0.0.1:8888/xml/v3/mem (memory manager
statistics), http://127.0.0.1:8888/xml/v3/tasks (task manager
statistics), and http://127.0.0.1:8888/xml/v3/traffic (traffic sizes).

The full set of statistics can also be read in JSON format at
http://127.0.0.1:8888/json, with the broken-out subsets at
http://127.0.0.1:8888/json/v1/status (server uptime and last
reconfiguration time), http://127.0.0.1:8888/json/v1/server (server and
resolver statistics), http://127.0.0.1:8888/json/v1/zones (zone
statistics), http://127.0.0.1:8888/json/v1/net (network status and
socket statistics), http://127.0.0.1:8888/json/v1/mem (memory manager
statistics), http://127.0.0.1:8888/json/v1/tasks (task manager
statistics), and http://127.0.0.1:8888/json/v1/traffic (traffic sizes).

4.2.19. trust-anchors Statement Grammar

trust-anchors { <string> (static-key |
 initial-key | static-ds | initial-ds)
 <integer> <integer> <integer>
 <quoted_string>; ... };

4.2.20. trust-anchors Statement Definition and Usage

The trust-anchors statement defines DNSSEC trust anchors. DNSSEC is
described in DNSSEC.

A trust anchor is defined when the public key or public key digest for a non-authoritative
zone is known but cannot be securely obtained through DNS, either
because it is the DNS root zone or because its parent zone is unsigned.
Once a key or digest has been configured as a trust anchor, it is treated as if it
has been validated and proven secure.

The resolver attempts DNSSEC validation on all DNS data in subdomains of
configured trust anchors. Validation below specified names can be
temporarily disabled by using rndc nta, or permanently disabled with
the validate-except option.

All keys listed in trust-anchors, and their corresponding zones, are
deemed to exist regardless of what parent zones say. Only keys
configured as trust anchors are used to validate the DNSKEY RRset for
the corresponding name. The parent’s DS RRset is not used.

trust-anchors may be set at the top level of named.conf or within
a view. If it is set in both places, the configurations are additive;
keys defined at the top level are inherited by all views, but keys
defined in a view are only used within that view.

The trust-anchors statement can contain
multiple trust-anchor entries, each consisting of a
domain name, followed by an “anchor type” keyword indicating
the trust anchor’s format, followed by the key or digest data.

If the anchor type is static-key or
initial-key, then it is followed with the
key’s flags, protocol, and algorithm, plus the Base64 representation
of the public key data. This is identical to the text
representation of a DNSKEY record. Spaces, tabs, newlines, and
carriage returns are ignored in the key data, so the
configuration may be split into multiple lines.

If the anchor type is static-ds or
initial-ds, it is followed with the
key tag, algorithm, digest type, and the hexadecimal
representation of the key digest. This is identical to the
text representation of a DS record. Spaces, tabs, newlines,
and carriage returns are ignored.

Trust anchors configured with the
static-key or static-ds
anchor types are immutable, while keys configured with
initial-key or initial-ds
can be kept up-to-date automatically, without intervention from the resolver operator.
(static-key keys are identical to keys configured using the
deprecated trusted-keys statement.)

Suppose, for example, that a zone’s key-signing key was compromised, and
the zone owner had to revoke and replace the key. A resolver which had
the original key
configured using static-key or
static-ds would be unable to validate
this zone any longer; it would reply with a SERVFAIL response
code. This would continue until the resolver operator had
updated the trust-anchors statement with
the new key.

If, however, the trust anchor had been configured using
initial-key or initial-ds
instead, the zone owner could add a “stand-by” key to
the zone in advance. named would store
the stand-by key, and when the original key was revoked,
named would be able to transition smoothly
to the new key. It would also recognize that the old key had
been revoked and cease using that key to validate answers,
minimizing the damage that the compromised key could do.
This is the process used to keep the ICANN root DNSSEC key
up-to-date.

Whereas static-key and
static-ds trust anchors continue
to be trusted until they are removed from
named.conf, an
initial-key or initial-ds
is only trusted once: for as long as it
takes to load the managed key database and start the
RFC 5011 [https://tools.ietf.org/html/rfc5011.html] key maintenance process.

It is not possible to mix static with initial trust anchors
for the same domain name.

The first time named runs with an
initial-key or initial-ds
configured in named.conf, it fetches the
DNSKEY RRset directly from the zone apex,
and validates it
using the trust anchor specified in trust-anchors.
If the DNSKEY RRset is validly signed by a key matching
the trust anchor, then it is used as the basis for a new
managed-keys database.

From that point on, whenever named runs, it sees the initial-key or initial-ds
listed in trust-anchors, checks to make sure RFC 5011 [https://tools.ietf.org/html/rfc5011.html] key maintenance
has already been initialized for the specified domain, and if so,
simply moves on. The key specified in the trust-anchors statement is
not used to validate answers; it is superseded by the key or keys stored
in the managed-keys database.

The next time named runs after an initial-key or initial-ds has been removed
from the dnssec-keys statement (or changed to a static-key or static-ds), the
corresponding zone is removed from the managed-keys database, and
RFC 5011 [https://tools.ietf.org/html/rfc5011.html] key maintenance is no longer used for that domain.

In the current implementation, the managed-keys database is stored as a
master-format zone file.

On servers which do not use views, this file is named
managed-keys.bind. When views are in use, there is a separate
managed-keys database for each view; the filename is the view name
(or, if a view name contains characters which would make it illegal as a
filename, a hash of the view name), followed by the suffix .mkeys.

When the key database is changed, the zone is updated. As with any other
dynamic zone, changes are written into a journal file, e.g.,
managed-keys.bind.jnl or internal.mkeys.jnl. Changes are
committed to the primary file as soon as possible afterward,
usually within 30 seconds. Whenever named is using
automatic key maintenance, the zone file and journal file can be
expected to exist in the working directory. (For this reason, among
others, the working directory should be always be writable by
named.)

If the dnssec-validation option is set to auto, named
automatically initializes an initial-key for the root zone. The key
that is used to initialize the key-maintenance process is stored in
bind.keys; the location of this file can be overridden with the
bindkeys-file option. As a fallback in the event no bind.keys
can be found, the initializing key is also compiled directly into
named.

dnssec-policy <string> {
 dnskey-ttl <duration>;
 keys { (csk | ksk | zsk) [(key-directory)] lifetime
 <duration_or_unlimited> algorithm <string> [<integer>]; ... };
 max-zone-ttl <duration>;
 parent-ds-ttl <duration>;
 parent-propagation-delay <duration>;
 parent-registration-delay <duration>;
 publish-safety <duration>;
 retire-safety <duration>;
 signatures-refresh <duration>;
 signatures-validity <duration>;
 signatures-validity-dnskey <duration>;
 zone-propagation-delay <duration>;
};

The dnssec-policy statement defines a key and
signing policy (KASP) for zones.

A KASP determines how one or more zones are signed
with DNSSEC. For example, it specifies how often keys should
roll, which cryptographic algorithms to use, and how often RRSIG
records need to be refreshed.

Keys are not shared among zones, which means that one set of keys
per zone is generated even if they have the same policy.
If multiple views are configured with different versions of the
same zone, each separate version uses the same set of signing
keys.

Multiple key and signing policies can be configured. To
attach a policy to a zone, add a dnssec-policy
option to the zone statement, specifying the
name of the policy that should be used.

Key rollover timing is computed for each key according to
the key lifetime defined in the KASP. The lifetime may be
modified by zone TTLs and propagation delays, to
prevent validation failures. When a key reaches the end of its
lifetime,
named generates and publishes a new key
automatically, then deactivates the old key and activates the
new one; finally, the old key is retired according to a computed
schedule.

Zone-signing key (ZSK) rollovers require no operator input.
Key-signing key (KSK) and combined-signing key (CSK) rollovers
require action to be taken to submit a DS record to the parent.
Rollover timing for KSKs and CSKs is adjusted to take into account
delays in processing and propagating DS updates.

There are two predefined dnssec-policy names:
none and default.
Setting a zone’s policy to
none is the same as not setting
dnssec-policy at all; the zone is not
signed. Policy default causes the
zone to be signed with a single combined-signing key (CSK)
using algorithm ECDSAP256SHA256; this key has an
unlimited lifetime. (A verbose copy of this policy
may be found in the source tree, in the file
doc/misc/dnssec-policy.default.conf.)

Note

The default signing policy may change in future releases.
This could require changes to a signing policy
when upgrading to a new version of BIND. Check
the release notes carefully when upgrading to be informed
of such changes. To prevent policy changes on upgrade,
use an explicitly defined dnssec-policy,
rather than default.

If a dnssec-policy statement is modified
and the server restarted or reconfigured, named
attempts to change the policy smoothly from the old one to
the new. For example, if the key algorithm is changed, then
a new key is generated with the new algorithm, and the old
algorithm is retired when the existing key’s lifetime ends.

Note

Rolling to a new policy while another key rollover is
already in progress is not yet supported, and may result in
unexpected behavior.

The following options can be specified in a dnssec-policy statement:

	dnskey-ttl

	This indicates the TTL to use when generating DNSKEY resource records. The default is 1
hour (3600 seconds).

	keys

	This is a list specifying the algorithms and roles to use when
generating keys and signing the zone.
Entries in this list do not represent specific
DNSSEC keys, which may be changed on a regular basis,
but the roles that keys play in the signing policy.
For example, configuring a KSK of algorithm RSASHA256 ensures
that the DNSKEY RRset always includes a key-signing key
for that algorithm.

Here is an example (for illustration purposes only) of
some possible entries in a keys
list:

 keys {
 ksk key-directory lifetime unlimited algorithm rsasha1 2048;
 zsk lifetime P30D algorithm 8;
 csk lifetime P6MT12H3M15S algorithm ecdsa256;
 };

This example specifies that three keys should be used
in the zone. The first token determines which role the
key plays in signing RRsets. If set to
``ksk``, then this is
a key-signing key; it has the KSK flag set and
is only used to sign DNSKEY, CDS, and CDNSKEY RRsets.
If set to ``zsk``, this is
a zone-signing key; the KSK flag is unset, and
the key signs all RRsets *except*
DNSKEY, CDS, and CDNSKEY. If set to
``csk``, the key has the KSK
flag set and is used to sign all RRsets.

An optional second token determines where the key is
stored. Currently, keys can only be stored in the
configured ``key-directory``. This token
may be used in the future to store keys in hardware
service modules or separate directories.

The ``lifetime`` parameter specifies how
long a key may be used before rolling over. In the
example above, the first key has an unlimited
lifetime, the second key may be used for 30 days, and the
third key has a rather peculiar lifetime of 6 months,
12 hours, 3 minutes, and 15 seconds. A lifetime of 0
seconds is the same as ``unlimited``.

Note that the lifetime of a key may be extended if
retiring it too soon would cause validation failures.
For example, if the key were configured to roll more
frequently than its own TTL, its lifetime would
automatically be extended to account for this.

The ``algorithm`` parameter specifies
the key's algorithm, expressed either as a string
("rsasha256", "ecdsa384", etc.) or as a decimal number.
An optional second parameter specifies the key's size
in bits. If it is omitted, as shown in the
example for the second and third keys, an appropriate
default size for the algorithm is used.

	publish-safety

	
This is a margin that is added to the pre-publication
interval in rollover timing calculations, to give some
extra time to cover unforeseen events. This increases
the time between when keys are published and when they become active.
The default is PT1H (1 hour).

	retire-safety

	This is a margin that is added to the post-publication interval
in rollover timing calculations, to give some extra time
to cover unforeseen events. This increases the time a key
remains published after it is no longer active. The
default is PT1H (1 hour).

	signatures-refresh

	This determines how frequently an RRSIG record needs to be
refreshed. The signature is renewed when the time until
the expiration time is less than the specified interval.
The default is P5D (5 days), meaning
signatures that expire in 5 days or sooner are
refreshed.

	signatures-validity

	This indicates the validity period of an RRSIG record (subject to
inception offset and jitter). The default is
P2W (2 weeks).

	signatures-validity-dnskey

	This is similar to signatures-validity, but for
DNSKEY records. The default is P2W
(2 weeks).

	max-zone-ttl

	Like the max-zone-ttl zone option,
this specifies the maximum permissible TTL value, in
seconds, for the zone. When loading a zone file using
a masterfile-format of
text or raw,
any record encountered with a TTL higher than
max-zone-ttl is capped at the
maximum permissible TTL value.

This is needed in DNSSEC-maintained zones because when
rolling to a new DNSKEY, the old key needs to remain
available until RRSIG records have expired from caches.
The max-zone-ttl option guarantees that
the largest TTL in the zone is no higher than the
set value.

Note

Because map-format files
load directly into memory, this option cannot be
used with them.

The default value is PT24H (24 hours).
A max-zone-ttl of zero is treated as if
the default value were in use.

	zone-propagation-delay

	This is the expected propagation delay from the time when a zone
is first updated to the time when the new version of the
zone is served by all secondary servers. The default
is PT5M (5 minutes).

	parent-ds-ttl

	This is the TTL of the DS RRset that the parent zone uses. The
default is P1D (1 day).

	parent-propagation-delay

	This is the expected propagation delay from the time when the
parent zone is updated to the time when the new version
is served by all of the parent zone’s name servers.
The default is PT1H (1 hour).

	parent-registration-delay

	This is the expected registration delay from the time when a DS
RRset change is requested to the time when the DS RRset
is updated in the parent zone. The default is
P1D (1 day).

4.2.21. managed-keys Statement Grammar

managed-keys { <string> (static-key
 | initial-key | static-ds |
 initial-ds) <integer> <integer>
 <integer> <quoted_string>; ... };, deprecated

4.2.22. managed-keys Statement Definition and Usage

The managed-keys statement has been
deprecated in favor of trust-anchors Statement Grammar
with the initial-key keyword.

4.2.23. trusted-keys Statement Grammar

trusted-keys { <string> <integer>
 <integer> <integer>
 <quoted_string>; ... };, deprecated

4.2.24. trusted-keys Statement Definition and Usage

The trusted-keys statement has been deprecated in favor of
trust-anchors Statement Grammar with the static-key keyword.

4.2.25. view Statement Grammar

view view_name [class] {
 match-clients { address_match_list } ;
 match-destinations { address_match_list } ;
 match-recursive-only yes_or_no ;
 [view_option ; ...]
 [zone_statement ; ...]
} ;

4.2.26. view Statement Definition and Usage

The view statement is a powerful feature of BIND 9 that lets a name
server answer a DNS query differently depending on who is asking. It is
particularly useful for implementing split DNS setups without having to
run multiple servers.

Each view statement defines a view of the DNS namespace that is
seen by a subset of clients. A client matches a view if its source IP
address matches the address_match_list of the view’s
match-clients clause, and its destination IP address matches the
address_match_list of the view’s match-destinations clause. If
not specified, both match-clients and match-destinations default
to matching all addresses. In addition to checking IP addresses,
match-clients and match-destinations can also take keys
which provide an mechanism for the client to select the view. A view can
also be specified as match-recursive-only, which means that only
recursive requests from matching clients match that view. The order
of the view statements is significant; a client request is
resolved in the context of the first view that it matches.

Zones defined within a view statement are only accessible to
clients that match the view. By defining a zone of the same name in
multiple views, different zone data can be given to different clients:
for example, “internal” and “external” clients in a split DNS setup.

Many of the options given in the options statement can also be used
within a view statement, and then apply only when resolving queries
with that view. When no view-specific value is given, the value in the
options statement is used as a default. Also, zone options can have
default values specified in the view statement; these view-specific
defaults take precedence over those in the options statement.

Views are class-specific. If no class is given, class IN is assumed.
Note that all non-IN views must contain a hint zone, since only the IN
class has compiled-in default hints.

If there are no view statements in the config file, a default view
that matches any client is automatically created in class IN. Any
zone statements specified on the top level of the configuration file
are considered to be part of this default view, and the options
statement applies to the default view. If any explicit view
statements are present, all zone statements must occur inside
view statements.

Here is an example of a typical split DNS setup implemented using
view statements:

view "internal" {
 // This should match our internal networks.
 match-clients { 10.0.0.0/8; };

 // Provide recursive service to internal
 // clients only.
 recursion yes;

 // Provide a complete view of the example.com
 // zone including addresses of internal hosts.
 zone "example.com" {
 type primary;
 file "example-internal.db";
 };
};

view "external" {
 // Match all clients not matched by the
 // previous view.
 match-clients { any; };

 // Refuse recursive service to external clients.
 recursion no;

 // Provide a restricted view of the example.com
 // zone containing only publicly accessible hosts.
 zone "example.com" {
 type primary;
 file "example-external.db";
 };
};

4.2.27. zone Statement Grammar

zone <string> [<class>] {
 type (master | primary);
 allow-query { <address_match_element>; ... };
 allow-query-on { <address_match_element>; ... };
 allow-transfer { <address_match_element>; ... };
 allow-update { <address_match_element>; ... };
 also-notify [port <integer>] [dscp <integer>] { (<primaries> | <ipv4_address> [port <integer>] | <ipv6_address> [port <integer>]) [key <string>]; ... };
 alt-transfer-source (<ipv4_address> | *) [port (<integer> | *)] [dscp <integer>];
 alt-transfer-source-v6 (<ipv6_address> | *) [port (<integer> | *)] [dscp <integer>];
 auto-dnssec (allow | maintain | off);
 check-dup-records (fail | warn | ignore);
 check-integrity <boolean>;
 check-mx (fail | warn | ignore);
 check-mx-cname (fail | warn | ignore);
 check-names (fail | warn | ignore);
 check-sibling <boolean>;
 check-spf (warn | ignore);
 check-srv-cname (fail | warn | ignore);
 check-wildcard <boolean>;
 database <string>;
 dialup (notify | notify-passive | passive | refresh | <boolean>);
 dlz <string>;
 dnskey-sig-validity <integer>;
 dnssec-dnskey-kskonly <boolean>;
 dnssec-loadkeys-interval <integer>;
 dnssec-policy <string>;
 dnssec-secure-to-insecure <boolean>;
 dnssec-update-mode (maintain | no-resign);
 file <quoted_string>;
 forward (first | only);
 forwarders [port <integer>] [dscp <integer>] { (<ipv4_address> | <ipv6_address>) [port <integer>] [dscp <integer>]; ... };
 inline-signing <boolean>;
 ixfr-from-differences <boolean>;
 journal <quoted_string>;
 key-directory <quoted_string>;
 masterfile-format (map | raw | text);
 masterfile-style (full | relative);
 max-ixfr-ratio (unlimited | <percentage>);
 max-journal-size (default | unlimited | <sizeval>);
 max-records <integer>;
 max-transfer-idle-out <integer>;
 max-transfer-time-out <integer>;
 max-zone-ttl (unlimited | <duration>);
 notify (explicit | master-only | primary-only | <boolean>);
 notify-delay <integer>;
 notify-source (<ipv4_address> | *) [port (<integer> | *)] [dscp <integer>];
 notify-source-v6 (<ipv6_address> | *) [port (<integer> | *)] [dscp <integer>];
 notify-to-soa <boolean>;
 serial-update-method (date | increment | unixtime);
 sig-signing-nodes <integer>;
 sig-signing-signatures <integer>;
 sig-signing-type <integer>;
 sig-validity-interval <integer> [<integer>];
 update-check-ksk <boolean>;
 update-policy (local | { (deny | grant) <string> (6to4-self | external | krb5-self | krb5-selfsub | krb5-subdomain | ms-self | ms-selfsub | ms-subdomain | name | self | selfsub | selfwild | subdomain | tcp-self | wildcard | zonesub) [<string>] <rrtypelist>; ... };
 zero-no-soa-ttl <boolean>;
 zone-statistics (full | terse | none | <boolean>);
};

zone <string> [<class>] {
 type (slave | secondary);
 allow-notify { <address_match_element>; ... };
 allow-query { <address_match_element>; ... };
 allow-query-on { <address_match_element>; ... };
 allow-transfer { <address_match_element>; ... };
 allow-update-forwarding { <address_match_element>; ... };
 also-notify [port <integer>] [dscp <integer>] { (<primaries> | <ipv4_address> [port <integer>] | <ipv6_address> [port <integer>]) [key <string>]; ... };
 alt-transfer-source (<ipv4_address> | *) [port (<integer> | *)] [dscp <integer>];
 alt-transfer-source-v6 (<ipv6_address> | *) [port (<integer> | *)] [dscp <integer>];
 auto-dnssec (allow | maintain | off);
 check-names (fail | warn | ignore);
 database <string>;
 dialup (notify | notify-passive | passive | refresh | <boolean>);
 dlz <string>;
 dnskey-sig-validity <integer>;
 dnssec-dnskey-kskonly <boolean>;
 dnssec-loadkeys-interval <integer>;
 dnssec-policy <string>;
 dnssec-update-mode (maintain | no-resign);
 file <quoted_string>;
 forward (first | only);
 forwarders [port <integer>] [dscp <integer>] { (<ipv4_address> | <ipv6_address>) [port <integer>] [dscp <integer>]; ... };
 inline-signing <boolean>;
 ixfr-from-differences <boolean>;
 journal <quoted_string>;
 key-directory <quoted_string>;
 masterfile-format (map | raw | text);
 masterfile-style (full | relative);
 masters [port <integer>] [dscp <integer>] { (<primaries> | <ipv4_address> [port <integer>] | <ipv6_address> [port <integer>]) [key <string>]; ... };
 max-ixfr-ratio (unlimited | <percentage>);
 max-journal-size (default | unlimited | <sizeval>);
 max-records <integer>;
 max-refresh-time <integer>;
 max-retry-time <integer>;
 max-transfer-idle-in <integer>;
 max-transfer-idle-out <integer>;
 max-transfer-time-in <integer>;
 max-transfer-time-out <integer>;
 min-refresh-time <integer>;
 min-retry-time <integer>;
 multi-master <boolean>;
 notify (explicit | master-only | primary-only | <boolean>);
 notify-delay <integer>;
 notify-source (<ipv4_address> | *) [port (<integer> | *)] [dscp <integer>];
 notify-source-v6 (<ipv6_address> | *) [port (<integer> | *)] [dscp <integer>];
 notify-to-soa <boolean>;
 primaries [port <integer>] [dscp <integer>] { (<primaries> | <ipv4_address> [port <integer>] | <ipv6_address> [port <integer>]) [key <string>]; ... };
 request-expire <boolean>;
 request-ixfr <boolean>;
 sig-signing-nodes <integer>;
 sig-signing-signatures <integer>;
 sig-signing-type <integer>;
 sig-validity-interval <integer> [<integer>];
 transfer-source (<ipv4_address> | *) [port (<integer> | *)] [dscp <integer>];
 transfer-source-v6 (<ipv6_address> | *) [port (<integer> | *)] [dscp <integer>];
 try-tcp-refresh <boolean>;
 update-check-ksk <boolean>;
 use-alt-transfer-source <boolean>;
 zero-no-soa-ttl <boolean>;
 zone-statistics (full | terse | none | <boolean>);
};

zone <string> [<class>] {
 type mirror;
 allow-notify { <address_match_element>; ... };
 allow-query { <address_match_element>; ... };
 allow-query-on { <address_match_element>; ... };
 allow-transfer { <address_match_element>; ... };
 allow-update-forwarding { <address_match_element>; ... };
 also-notify [port <integer>] [dscp <integer>] { (<primaries> | <ipv4_address> [port <integer>] | <ipv6_address> [port <integer>]) [key <string>]; ... };
 alt-transfer-source (<ipv4_address> | *) [port (<integer> | *)] [dscp <integer>];
 alt-transfer-source-v6 (<ipv6_address> | *) [port (<integer> | *)] [dscp <integer>];
 check-names (fail | warn | ignore);
 database <string>;
 file <quoted_string>;
 ixfr-from-differences <boolean>;
 journal <quoted_string>;
 masterfile-format (map | raw | text);
 masterfile-style (full | relative);
 masters [port <integer>] [dscp <integer>] { (<primaries> | <ipv4_address> [port <integer>] | <ipv6_address> [port <integer>]) [key <string>]; ... };
 max-ixfr-ratio (unlimited | <percentage>);
 max-journal-size (default | unlimited | <sizeval>);
 max-records <integer>;
 max-refresh-time <integer>;
 max-retry-time <integer>;
 max-transfer-idle-in <integer>;
 max-transfer-idle-out <integer>;
 max-transfer-time-in <integer>;
 max-transfer-time-out <integer>;
 min-refresh-time <integer>;
 min-retry-time <integer>;
 multi-master <boolean>;
 notify (explicit | master-only | primary-only | <boolean>);
 notify-delay <integer>;
 notify-source (<ipv4_address> | *) [port (<integer> | *)] [dscp <integer>];
 notify-source-v6 (<ipv6_address> | *) [port (<integer> | *)] [dscp <integer>];
 primaries [port <integer>] [dscp <integer>] { (<primaries> | <ipv4_address> [port <integer>] | <ipv6_address> [port <integer>]) [key <string>]; ... };
 request-expire <boolean>;
 request-ixfr <boolean>;
 transfer-source (<ipv4_address> | *) [port (<integer> | *)] [dscp <integer>];
 transfer-source-v6 (<ipv6_address> | *) [port (<integer> | *)] [dscp <integer>];
 try-tcp-refresh <boolean>;
 use-alt-transfer-source <boolean>;
 zero-no-soa-ttl <boolean>;
 zone-statistics (full | terse | none | <boolean>);
};

zone <string> [<class>] {
 type hint;
 check-names (fail | warn | ignore);
 delegation-only <boolean>;
 file <quoted_string>;
};

zone <string> [<class>] {
 type stub;
 allow-query { <address_match_element>; ... };
 allow-query-on { <address_match_element>; ... };
 check-names (fail | warn | ignore);
 database <string>;
 delegation-only <boolean>;
 dialup (notify | notify-passive | passive | refresh | <boolean>);
 file <quoted_string>;
 forward (first | only);
 forwarders [port <integer>] [dscp <integer>] { (<ipv4_address> | <ipv6_address>) [port <integer>] [dscp <integer>]; ... };
 masterfile-format (map | raw | text);
 masterfile-style (full | relative);
 masters [port <integer>] [dscp <integer>] { (<primaries> | <ipv4_address> [port <integer>] | <ipv6_address> [port <integer>]) [key <string>]; ... };
 max-records <integer>;
 max-refresh-time <integer>;
 max-retry-time <integer>;
 max-transfer-idle-in <integer>;
 max-transfer-time-in <integer>;
 min-refresh-time <integer>;
 min-retry-time <integer>;
 multi-master <boolean>;
 primaries [port <integer>] [dscp <integer>] { (<primaries> | <ipv4_address> [port <integer>] | <ipv6_address> [port <integer>]) [key <string>]; ... };
 transfer-source (<ipv4_address> | *) [port (<integer> | *)] [dscp <integer>];
 transfer-source-v6 (<ipv6_address> | *) [port (<integer> | *)] [dscp <integer>];
 use-alt-transfer-source <boolean>;
 zone-statistics (full | terse | none | <boolean>);
};

zone <string> [<class>] {
 type static-stub;
 allow-query { <address_match_element>; ... };
 allow-query-on { <address_match_element>; ... };
 forward (first | only);
 forwarders [port <integer>] [dscp <integer>] { (<ipv4_address> | <ipv6_address>) [port <integer>] [dscp <integer>]; ... };
 max-records <integer>;
 server-addresses { (<ipv4_address> | <ipv6_address>); ... };
 server-names { <string>; ... };
 zone-statistics (full | terse | none | <boolean>);
};

zone <string> [<class>] {
 type forward;
 delegation-only <boolean>;
 forward (first | only);
 forwarders [port <integer>] [dscp <integer>] { (<ipv4_address> | <ipv6_address>) [port <integer>] [dscp <integer>]; ... };
};

zone <string> [<class>] {
 type redirect;
 allow-query { <address_match_element>; ... };
 allow-query-on { <address_match_element>; ... };
 dlz <string>;
 file <quoted_string>;
 masterfile-format (map | raw | text);
 masterfile-style (full | relative);
 masters [port <integer>] [dscp <integer>] { (<primaries> | <ipv4_address> [port <integer>] | <ipv6_address> [port <integer>]) [key <string>]; ... };
 max-records <integer>;
 max-zone-ttl (unlimited | <duration>);
 primaries [port <integer>] [dscp <integer>] { (<primaries> | <ipv4_address> [port <integer>] | <ipv6_address> [port <integer>]) [key <string>]; ... };
 zone-statistics (full | terse | none | <boolean>);
};

zone <string> [<class>] {
 type delegation-only;
};

zone <string> [<class>] {
 in-view <string>;
};

4.2.28. zone Statement Definition and Usage

4.2.28.1. Zone Types

The type keyword is required for the zone configuration unless
it is an in-view configuration. Its acceptable values are:
primary (or master), secondary (or slave), mirror,
hint, stub, static-stub, forward, redirect,
or delegation-only.

	primary

	A primary zone has a master copy of the data for the zone and is able
to provide authoritative answers for it. Type master is a synonym
for primary.

	secondary

	A secondary zone is a replica of a primary zone. Type slave is a
synonym for secondary. The primaries list specifies one or more IP
addresses of primary servers that the secondary contacts to update
its copy of the zone. Primaries list elements can
also be names of other primaries lists. By default,
transfers are made from port 53 on the servers;
this can be changed for all servers by specifying
a port number before the list of IP addresses,
or on a per-server basis after the IP address.
Authentication to the primary can also be done with
per-server TSIG keys. If a file is specified, then the
replica is written to this file
whenever the zone
is changed, and reloaded from this file on a server
restart. Use of a file is recommended, since it
often speeds server startup and eliminates a
needless waste of bandwidth. Note that for large
numbers (in the tens or hundreds of thousands) of
zones per server, it is best to use a two-level
naming scheme for zone filenames. For example,
a secondary server for the zone
example.com might place
the zone contents into a file called
ex/example.com, where
ex/ is just the first two
letters of the zone name. (Most operating systems
behave very slowly if there are 100000 files in a single directory.)

	mirror

	A mirror zone is similar to a zone of type secondary, except its data is
subject to DNSSEC validation before being used in answers. Validation is
applied to the entire zone during the zone transfer process, and again when
the zone file is loaded from disk upon restarting named. If validation
of a new version of a mirror zone fails, a retransfer is scheduled and the
most recent correctly validated version of that zone is used, until it either
expires or a newer version validates correctly. If no usable zone data is
available for a mirror zone, either due to transfer failure or
expiration, traditional DNS recursion is used to look up the answers instead.
Mirror zones cannot be used in a view that does not have recursion enabled.

Answers coming from a mirror zone look almost exactly like answers from a
zone of type secondary, with the notable exceptions that the AA bit
(“authoritative answer”) is not set, and the AD bit (“authenticated data”)
is.

Mirror zones are intended to be used to set up a fast local copy of the root
zone, similar to the one described in RFC 7706 [https://tools.ietf.org/html/rfc7706.html]. A default list of primary
servers for the IANA root zone is built into named and thus its mirroring
can be enabled using the following configuration:

zone "." {
 type mirror;
};

Mirroring a zone other than root
requires an explicit list of primary servers to be provided using the
primaries option (see primaries Statement Grammar for details), and a
key-signing key (KSK) for the specified zone to be explicitly configured as a
trust anchor.

To make mirror zone contents persist between named restarts, use the
file option.

When configuring NOTIFY for a mirror zone, only notify no; and notify
explicit; can be used at the zone level; any other notify
setting at the zone level is a configuration error. Using any other
notify setting at the options or view level causes that
setting to be overridden with notify explicit; for the mirror zone. The
global default for the notify option is yes, so mirror zones are by
default configured with notify explicit;.

Outgoing transfers of mirror zones are disabled by default but may be
enabled using allow-transfer.

Note

Use of this zone type with any zone other than the root should
be considered experimental and may cause performance issues, especially
for zones which are large and/or frequently updated.

	hint

	The initial set of root name servers is specified using a hint zone.
When the server starts, it uses the root hints to find a root name
server and get the most recent list of root name servers. If no hint zone
is specified for class IN, the server uses a compiled-in default set of
root servers hints. Classes other than IN have no built-in default hints.

	stub

	A stub zone is similar to a secondary zone, except that it replicates only
the NS records of a primary zone instead of the entire zone. Stub zones
are not a standard part of the DNS; they are a feature specific to the
BIND implementation.

Stub zones can be used to eliminate the need for a glue NS record in a parent
zone, at the expense of maintaining a stub zone entry and a set of name
server addresses in named.conf. This usage is not recommended for
new configurations, and BIND 9 supports it only in a limited way. If a BIND 9
primary, serving a parent zone, has child stub
zones configured, all the secondary servers for the parent zone also need to
have the same child stub zones configured.

Stub zones can also be used as a way to force the resolution of a given
domain to use a particular set of authoritative servers. For example, the
caching name servers on a private network using RFC 1918 [https://tools.ietf.org/html/rfc1918.html] addressing may be
configured with stub zones for 10.in-addr.arpa to use a set of
internal name servers as the authoritative servers for that domain.

	static-stub

	A static-stub zone is similar to a stub zone, with the following
exceptions: the zone data is statically configured, rather than
transferred from a primary server; and when recursion is necessary for a query
that matches a static-stub zone, the locally configured data (name server
names and glue addresses) is always used, even if different authoritative
information is cached.

Zone data is configured via the server-addresses and server-names
zone options.

The zone data is maintained in the form of NS and (if necessary) glue A or
AAAA RRs internally, which can be seen by dumping zone databases with
rndc dumpdb -all. The configured RRs are considered local configuration
parameters rather than public data. Non-recursive queries (i.e., those
with the RD bit off) to a static-stub zone are therefore prohibited and
are responded to with REFUSED.

Since the data is statically configured, no zone maintenance action takes
place for a static-stub zone. For example, there is no periodic refresh
attempt, and an incoming notify message is rejected with an rcode
of NOTAUTH.

Each static-stub zone is configured with internally generated NS and (if
necessary) glue A or AAAA RRs.

	forward

	A forward zone is a way to configure forwarding on a per-domain basis.
A zone statement of type forward can contain a forward and/or
forwarders statement, which applies to queries within the domain
given by the zone name. If no forwarders statement is present, or an
empty list for forwarders is given, then no forwarding is done
for the domain, canceling the effects of any forwarders in the options
statement. Thus, to use this type of zone to change the
behavior of the global forward option (that is, “forward first” to,
then “forward only”, or vice versa), but use the same servers as set
globally, re-specify the global forwarders.

	redirect

	Redirect zones are used to provide answers to queries when normal
resolution would result in NXDOMAIN being returned. Only one redirect zone
is supported per view. allow-query can be used to restrict which
clients see these answers.

If the client has requested DNSSEC records (DO=1) and the NXDOMAIN response
is signed, no substitution occurs.

To redirect all NXDOMAIN responses to 100.100.100.2 and
2001:ffff:ffff::100.100.100.2, configure a type redirect zone
named “.”, with the zone file containing wildcard records that point to
the desired addresses: *. IN A 100.100.100.2 and
*. IN AAAA 2001:ffff:ffff::100.100.100.2.

As another example, to redirect all Spanish names (under .ES), use similar entries
but with the names *.ES. instead of *.. To redirect all commercial
Spanish names (under COM.ES), use wildcard entries
called *.COM.ES..

Note that the redirect zone supports all possible types; it is not
limited to A and AAAA records.

If a redirect zone is configured with a primaries option, then it is
transferred in as if it were a secondary zone. Otherwise, it is loaded from a
file as if it were a primary zone.

Because redirect zones are not referenced directly by name, they are not
kept in the zone lookup table with normal primary and secondary zones. To reload
a redirect zone, use rndc reload -redirect; to retransfer a
redirect zone configured as a secondary, use rndc retransfer -redirect.
When using rndc reload without specifying a zone name, redirect
zones are reloaded along with other zones.

	delegation-only

	This zone type is used to enforce the delegation-only status of infrastructure
zones (e.g., COM, NET, ORG). Any answer that is received without an
explicit or implicit delegation in the authority section is treated
as NXDOMAIN. This does not apply to the zone apex, and should not be
applied to leaf zones.

delegation-only has no effect on answers received from forwarders.

See caveats in root-delegation-only.

	in-view

	When using multiple views, a primary or secondary zone configured
in one view can be referenced in a subsequent view. This allows both views
to use the same zone without the overhead of loading it more than once. This
is configured using a zone statement, with an in-view option
specifying the view in which the zone is defined. A zone statement
containing in-view does not need to specify a type, since that is part
of the zone definition in the other view.

See Multiple Views for more information.

4.2.28.2. Class

The zone’s name may optionally be followed by a class. If a class is not
specified, class IN (for Internet) is assumed. This is correct
for the vast majority of cases.

The hesiod class is named for an information service from MIT’s
Project Athena. It was used to share information about various systems
databases, such as users, groups, printers, and so on. The keyword HS
is a synonym for hesiod.

Another MIT development is Chaosnet, a LAN protocol created in the
mid-1970s. Zone data for it can be specified with the CHAOS class.

4.2.28.3. Zone Options

	allow-notify

	See the description of allow-notify in Access Control.

	allow-query

	See the description of allow-query in Access Control.

	allow-query-on

	See the description of allow-query-on in Access Control.

	allow-transfer

	See the description of allow-transfer in Access Control.

	allow-update

	See the description of allow-update in Access Control.

	update-policy

	This specifies a “Simple Secure Update” policy. See Dynamic Update Policies.

	allow-update-forwarding

	See the description of allow-update-forwarding in Access Control.

	also-notify

	This option is only meaningful if notify is active for this zone. The set of
machines that receive a DNS NOTIFY message for this zone is
made up of all the listed name servers (other than the primary)
for the zone, plus any IP addresses specified with
also-notify. A port may be specified with each also-notify
address to send the notify messages to a port other than the default
of 53. A TSIG key may also be specified to cause the NOTIFY to be
signed by the given key. also-notify is not meaningful for stub
zones. The default is the empty list.

	check-names

	This option is used to restrict the character set and syntax of
certain domain names in primary files and/or DNS responses received
from the network. The default varies according to zone type. For
primary zones the default is fail; for secondary zones the
default is warn. It is not implemented for hint zones.

	check-mx

	See the description of check-mx in Boolean Options.

	check-spf

	See the description of check-spf in Boolean Options.

	check-wildcard

	See the description of check-wildcard in Boolean Options.

	check-integrity

	See the description of check-integrity in Boolean Options.

	check-sibling

	See the description of check-sibling in Boolean Options.

	zero-no-soa-ttl

	See the description of zero-no-soa-ttl in Boolean Options.

	update-check-ksk

	See the description of update-check-ksk in Boolean Options.

	dnssec-loadkeys-interval

	See the description of dnssec-loadkeys-interval in options Statement Definition and Usage.

	dnssec-update-mode

	See the description of dnssec-update-mode in options Statement Definition and Usage.

	dnssec-dnskey-kskonly

	See the description of dnssec-dnskey-kskonly in Boolean Options.

	try-tcp-refresh

	See the description of try-tcp-refresh in Boolean Options.

	database

	This specifies the type of database to be used to store the zone data.
The string following the database keyword is interpreted as a
list of whitespace-delimited words. The first word identifies the
database type, and any subsequent words are passed as arguments to
the database to be interpreted in a way specific to the database
type.

The default is rbt, BIND 9’s native in-memory red-black tree
database. This database does not take arguments.

Other values are possible if additional database drivers have been
linked into the server. Some sample drivers are included with the
distribution but none are linked in by default.

	dialup

	See the description of dialup in Boolean Options.

	delegation-only

	This flag only applies to forward, hint, and stub zones. If set to
yes, then the zone is treated as if it is also a
delegation-only type zone.

See caveats in root-delegation-only.

	file

	This sets the zone’s filename. In primary, hint, and redirect
zones which do not have primaries defined, zone data is loaded from
this file. In secondary, mirror, stub, and redirect zones
which do have primaries defined, zone data is retrieved from
another server and saved in this file. This option is not applicable
to other zone types.

	forward

	This option is only meaningful if the zone has a forwarders list. The only value
causes the lookup to fail after trying the forwarders and getting no
answer, while first allows a normal lookup to be tried.

	forwarders

	This is used to override the list of global forwarders. If it is not
specified in a zone of type forward, no forwarding is done for
the zone and the global options are not used.

	journal

	This allows the default journal’s filename to be overridden. The default is
the zone’s filename with “.jnl” appended. This is applicable to
primary and secondary zones.

	max-ixfr-ratio

	See the description of max-ixfr-ratio in options Statement Definition and Usage.

	max-journal-size

	See the description of max-journal-size in Server Resource Limits.

	max-records

	See the description of max-records in Server Resource Limits.

	max-transfer-time-in

	See the description of max-transfer-time-in in Zone Transfers.

	max-transfer-idle-in

	See the description of max-transfer-idle-in in Zone Transfers.

	max-transfer-time-out

	See the description of max-transfer-time-out in Zone Transfers.

	max-transfer-idle-out

	See the description of max-transfer-idle-out in Zone Transfers.

	notify

	See the description of notify in Boolean Options.

	notify-delay

	See the description of notify-delay in Tuning.

	notify-to-soa

	See the description of notify-to-soa in Boolean Options.

	zone-statistics

	See the description of zone-statistics in options Statement Definition and Usage.

	server-addresses

	This option is only meaningful for static-stub zones. This is a list of IP addresses
to which queries should be sent in recursive resolution for the zone.
A non-empty list for this option internally configures the apex
NS RR with associated glue A or AAAA RRs.

For example, if “example.com” is configured as a static-stub zone
with 192.0.2.1 and 2001:db8::1234 in a server-addresses option,
the following RRs are internally configured:

example.com. NS example.com.
example.com. A 192.0.2.1
example.com. AAAA 2001:db8::1234

These records are used internally to resolve names under the
static-stub zone. For instance, if the server receives a query for
“www.example.com” with the RD bit on, the server initiates
recursive resolution and sends queries to 192.0.2.1 and/or
2001:db8::1234.

	server-names

	This option is only meaningful for static-stub zones. This is a list of domain names
of name servers that act as authoritative servers of the static-stub
zone. These names are resolved to IP addresses when named
needs to send queries to these servers. For this supplemental
resolution to be successful, these names must not be a subdomain of the
origin name of the static-stub zone. That is, when “example.net” is the
origin of a static-stub zone, “ns.example” and “master.example.com”
can be specified in the server-names option, but “ns.example.net”
cannot; it is rejected by the configuration parser.

A non-empty list for this option internally configures the apex
NS RR with the specified names. For example, if “example.com” is
configured as a static-stub zone with “ns1.example.net” and
“ns2.example.net” in a server-names option, the following RRs
are internally configured:

example.com. NS ns1.example.net.
example.com. NS ns2.example.net.

These records are used internally to resolve names under the
static-stub zone. For instance, if the server receives a query for
“www.example.com” with the RD bit on, the server initiates recursive
resolution, resolves “ns1.example.net” and/or “ns2.example.net” to IP
addresses, and then sends queries to one or more of these addresses.

	sig-validity-interval

	See the description of sig-validity-interval in Tuning.

	sig-signing-nodes

	See the description of sig-signing-nodes in Tuning.

	sig-signing-signatures

	See the description of sig-signing-signatures in
Tuning.

	sig-signing-type

	See the description of sig-signing-type in Tuning.

	transfer-source

	See the description of transfer-source in Zone Transfers.

	transfer-source-v6

	See the description of transfer-source-v6 in Zone Transfers.

	alt-transfer-source

	See the description of alt-transfer-source in Zone Transfers.

	alt-transfer-source-v6

	See the description of alt-transfer-source-v6 in Zone Transfers.

	use-alt-transfer-source

	See the description of use-alt-transfer-source in Zone Transfers.

	notify-source

	See the description of notify-source in Zone Transfers.

	notify-source-v6

	See the description of notify-source-v6 in Zone Transfers.

	min-refresh-time; max-refresh-time; min-retry-time; max-retry-time

	See the descriptions in Tuning.

	ixfr-from-differences

	See the description of ixfr-from-differences in Boolean Options.
(Note that the ixfr-from-differences choices of primary and secondary
are not available at the zone level.)

	key-directory

	See the description of key-directory in options Statement Definition and Usage.

	auto-dnssec

	See the description of auto-dnssec in options Statement Definition and Usage.

	serial-update-method

	See the description of serial-update-method in options Statement Definition and Usage.

	inline-signing

	If yes, this enables “bump in the wire” signing of a zone, where
an unsigned zone is transferred in or loaded from disk and a signed
version of the zone is served with, possibly, a different serial
number. This behavior is disabled by default.

	multi-master

	See the description of multi-master in Boolean Options.

	masterfile-format

	See the description of masterfile-format in Tuning.

	max-zone-ttl

	See the description of max-zone-ttl in options Statement Definition and Usage.

	dnssec-secure-to-insecure

	See the description of dnssec-secure-to-insecure in Boolean Options.

4.2.28.4. Dynamic Update Policies

BIND 9 supports two methods of granting clients the right to
perform dynamic updates to a zone, configured by the allow-update
or update-policy options.

The allow-update clause is a simple access control list. Any client
that matches the ACL is granted permission to update any record in the
zone.

The update-policy clause allows more fine-grained control over which
updates are allowed. It specifies a set of rules, in which each rule
either grants or denies permission for one or more names in the zone to
be updated by one or more identities. Identity is determined by the key
that signed the update request, using either TSIG or SIG(0). In most
cases, update-policy rules only apply to key-based identities. There
is no way to specify update permissions based on the client source address.

update-policy rules are only meaningful for zones of type
primary, and are not allowed in any other zone type. It is a
configuration error to specify both allow-update and
update-policy at the same time.

A pre-defined update-policy rule can be switched on with the command
update-policy local;. named automatically
generates a TSIG session key when starting and stores it in a file;
this key can then be used by local clients to update the zone while
named is running. By default, the session key is stored in the file
/var/run/named/session.key, the key name is “local-ddns”, and the
key algorithm is HMAC-SHA256. These values are configurable with the
session-keyfile, session-keyname, and session-keyalg options,
respectively. A client running on the local system, if run with
appropriate permissions, may read the session key from the key file and
use it to sign update requests. The zone’s update policy is set to
allow that key to change any record within the zone. Assuming the key
name is “local-ddns”, this policy is equivalent to:

update-policy { grant local-ddns zonesub any; };

with the additional restriction that only clients connecting from the
local system are permitted to send updates.

Note that only one session key is generated by named; all zones
configured to use update-policy local accept the same key.

The command nsupdate -l implements this feature, sending requests to
localhost and signing them using the key retrieved from the session key
file.

Other rule definitions look like this:

(grant | deny) identity ruletype name types

Each rule grants or denies privileges. Rules are checked in the order in
which they are specified in the update-policy statement. Once a
message has successfully matched a rule, the operation is immediately
granted or denied, and no further rules are examined. There are 13 types
of rules; the rule type is specified by the ruletype field, and the
interpretation of other fields varies depending on the rule type.

In general, a rule is matched when the key that signed an update request
matches the identity field, the name of the record to be updated
matches the name field (in the manner specified by the ruletype
field), and the type of the record to be updated matches the types
field. Details for each rule type are described below.

The identity field must be set to a fully qualified domain name. In
most cases, this represents the name of the TSIG or SIG(0) key that
must be used to sign the update request. If the specified name is a
wildcard, it is subject to DNS wildcard expansion, and the rule may
apply to multiple identities. When a TKEY exchange has been used to
create a shared secret, the identity of the key used to authenticate the
TKEY exchange is used as the identity of the shared secret. Some
rule types use identities matching the client’s Kerberos principal (e.g,
"host/machine@REALM") or Windows realm (machine$@REALM).

The name field also specifies a fully qualified domain name. This often
represents the name of the record to be updated. Interpretation of this
field is dependent on rule type.

If no types are explicitly specified, then a rule matches all types
except RRSIG, NS, SOA, NSEC, and NSEC3. Types may be specified by name,
including ANY; ANY matches all types except NSEC and NSEC3, which can
never be updated. Note that when an attempt is made to delete all
records associated with a name, the rules are checked for each existing
record type.

If the type is immediately followed by a number in parentheses,
that number is the maximum number of records of that type permitted
to exist in the RRset after an update has been applied. For example,
PTR(1) indicates that only one PTR record is allowed. If an
attempt is made to add two PTR records in an update, the second one
is silently discarded. If a PTR record already exists, both
new records are silently discarded.

If type ANY is specified with a limit, then that limit applies to
all types that are not otherwise specified. For example, A PTR(1)
ANY(2) indicates that an unlimited number of A records can exist,
but only one PTR record, and no more than two of any other type.

Typical use with a rule grant * tcp-self . PTR(1); in the zone
2.0.192.IN-ADDR.ARPA looks like this:

nsupdate -v <<EOF
local 192.0.2.1
del 1.2.0.192.IN-ADDR.ARPA PTR
add 1.2.0.192.IN-ADDR.ARPA 0 PTR EXAMPLE.COM
send
EOF

The ruletype field has 16 values: name, subdomain, zonesub, wildcard,
self, selfsub, selfwild, ms-self, ms-selfsub, ms-subdomain,
krb5-self, krb5-selfsub, krb5-subdomain,
tcp-self, 6to4-self, and external.

	name

	With exact-match semantics, this rule matches when the name being updated is identical to the contents of the name field.

	subdomain

	This rule matches when the name being updated is a subdomain of, or identical to, the contents of the name field.

	zonesub

	This rule is similar to subdomain, except that it matches when the name being updated is a subdomain of the zone in which the update-policy statement appears. This obviates the need to type the zone name twice, and enables the use of a standard update-policy statement in multiple zones without modification.
When this rule is used, the name field is omitted.

	wildcard

	The name field is subject to DNS wildcard expansion, and this rule matches when the name being updated is a valid expansion of the wildcard.

	self

	This rule matches when the name of the record being updated matches the contents of the identity field. The name field is ignored. To avoid confusion, it is recommended that this field be set to the same value as the identity field or to “.”
The self rule type is most useful when allowing one key per name to update, where the key has the same name as the record to be updated. In this case, the identity field can be specified as * (asterisk).

	selfsub

	This rule is similar to self, except that subdomains of self can also be updated.

	selfwild

	This rule is similar to self, except that only subdomains of self can be updated.

	ms-self

	When a client sends an UPDATE using a Windows machine principal (for example, machine$@REALM), this rule allows records with the absolute name of machine.REALM to be updated.

The realm to be matched is specified in the identity field.

The name field has no effect on this rule; it should be set to “.” as a placeholder.

For example, grant EXAMPLE.COM ms-self . A AAAA allows any machine with a valid principal in the realm EXAMPLE.COM to update its own address records.

	ms-selfsub

	This is similar to ms-self, except it also allows updates to any subdomain of the name specified in the Windows machine principal, not just to the name itself.

	ms-subdomain

	When a client sends an UPDATE using a Windows machine principal (for example, machine$@REALM), this rule allows any machine in the specified realm to update any record in the zone or in a specified subdomain of the zone.

The realm to be matched is specified in the identity field.

The name field specifies the subdomain that may be updated. If set to “.” or any other name at or above the zone apex, any name in the zone can be updated.

For example, if update-policy for the zone “example.com” includes grant EXAMPLE.COM ms-subdomain hosts.example.com. AA AAAA, any machine with a valid principal in the realm EXAMPLE.COM is able to update address records at or below hosts.example.com.

	krb5-self

	When a client sends an UPDATE using a Kerberos machine principal (for example, host/machine@REALM), this rule allows records with the absolute name of machine to be updated, provided it has been authenticated by REALM. This is similar but not identical to ms-self, due to the machine part of the Kerberos principal being an absolute name instead of an unqualified name.

The realm to be matched is specified in the identity field.

The name field has no effect on this rule; it should be set to “.” as a placeholder.

For example, grant EXAMPLE.COM krb5-self . A AAAA allows any machine with a valid principal in the realm EXAMPLE.COM to update its own address records.

	krb5-selfsub

	This is similar to krb5-self, except it also allows updates to any subdomain of the name specified in the machine part of the Kerberos principal, not just to the name itself.

	krb5-subdomain

	This rule is identical to ms-subdomain, except that it works with Kerberos machine principals (i.e., host/machine@REALM) rather than Windows machine principals.

	tcp-self

	This rule allows updates that have been sent via TCP and for which the standard mapping from the client’s IP address into the in-addr.arpa and ip6.arpa namespaces matches the name to be updated. The identity field must match that name. The name field should be set to “.”. Note that, since identity is based on the client’s IP address, it is not necessary for update request messages to be signed.

Note

It is theoretically possible to spoof these TCP sessions.

	6to4-self

	This allows the name matching a 6to4 IPv6 prefix, as specified in RFC 3056 [https://tools.ietf.org/html/rfc3056.html], to be updated by any TCP connection from either the 6to4 network or from the corresponding IPv4 address. This is intended to allow NS or DNAME RRsets to be added to the ip6.arpa reverse tree.

The identity field must match the 6to4 prefix in ip6.arpa. The name field should be set to “.”. Note that, since identity is based on the client’s IP address, it is not necessary for update request messages to be signed.

In addition, if specified for an ip6.arpa name outside of the 2.0.0.2.ip6.arpa namespace, the corresponding /48 reverse name can be updated. For example, TCP/IPv6 connections from 2001:DB8:ED0C::/48 can update records at C.0.D.E.8.B.D.0.1.0.0.2.ip6.arpa.

Note

It is theoretically possible to spoof these TCP sessions.

	external

	This rule allows named to defer the decision of whether to allow a given update to an external daemon.

The method of communicating with the daemon is specified in the identity field, the format of which is “local:path”, where “path” is the location of a Unix-domain socket. (Currently, “local” is the only supported mechanism.)

Requests to the external daemon are sent over the Unix-domain socket as datagrams with the following format:

Protocol version number (4 bytes, network byte order, currently 1)
Request length (4 bytes, network byte order)
Signer (null-terminated string)
Name (null-terminated string)
TCP source address (null-terminated string)
Rdata type (null-terminated string)
Key (null-terminated string)
TKEY token length (4 bytes, network byte order)
TKEY token (remainder of packet)

The daemon replies with a four-byte value in network byte order, containing either 0 or 1; 0 indicates that the specified update is not permitted, and 1 indicates that it is.

4.2.28.5. Multiple Views

When multiple views are in use, a zone may be referenced by more than
one of them. Often, the views contain different zones with the same
name, allowing different clients to receive different answers for the
same queries. At times, however, it is desirable for multiple views to
contain identical zones. The in-view zone option provides an
efficient way to do this; it allows a view to reference a zone that was
defined in a previously configured view. For example:

view internal {
 match-clients { 10/8; };

 zone example.com {
 type primary;
 file "example-external.db";
 };
};

view external {
 match-clients { any; };

 zone example.com {
 in-view internal;
 };
};

An in-view option cannot refer to a view that is configured later in
the configuration file.

A zone statement which uses the in-view option may not use any
other options, with the exception of forward and forwarders.
(These options control the behavior of the containing view, rather than
change the zone object itself.)

Zone-level ACLs (e.g., allow-query, allow-transfer), and other
configuration details of the zone, are all set in the view the referenced
zone is defined in. Be careful to ensure that ACLs are wide
enough for all views referencing the zone.

An in-view zone cannot be used as a response policy zone.

An in-view zone is not intended to reference a forward zone.

4.3. Zone File

4.3.1. Types of Resource Records and When to Use Them

This section, largely borrowed from RFC 1034 [https://tools.ietf.org/html/rfc1034.html], describes the concept of a
Resource Record (RR) and explains when each type is used. Since the
publication of RFC 1034 [https://tools.ietf.org/html/rfc1034.html], several new RRs have been identified and
implemented in the DNS. These are also included.

4.3.1.1. Resource Records

A domain name identifies a node. Each node has a set of resource
information, which may be empty. The set of resource information
associated with a particular name is composed of separate RRs. The order
of RRs in a set is not significant and need not be preserved by name
servers, resolvers, or other parts of the DNS. However, sorting of
multiple RRs is permitted for optimization purposes: for example, to
specify that a particular nearby server be tried first. See
The sortlist Statement and RRset Ordering.

The components of a Resource Record are:

	owner name

	The domain name where the RR is found.

	type

	An encoded 16-bit value that specifies the type of the resource record.

	TTL

	The time-to-live of the RR. This field is a 32-bit integer in units of seconds, and is primarily used by resolvers when they cache RRs. The TTL describes how long a RR can be cached before it should be discarded.

	class

	An encoded 16-bit value that identifies a protocol family or an instance of a protocol.

	RDATA

	The resource data. The format of the data is type- and sometimes class-specific.

For a complete list of types of valid RRs, including those that have been obsoleted, please refer to https://en.wikipedia.org/wiki/List_of_DNS_record_types.

The following classes of resource records are currently valid in the
DNS:

	IN

	The Internet.

	CH

	Chaosnet, a LAN protocol created at MIT in the mid-1970s. It was rarely used for its historical purpose, but was reused for BIND’s built-in server information zones, e.g., version.bind.

	HS

	Hesiod, an information service developed by MIT’s Project Athena. It was used to share information about various systems databases, such as users, groups, printers, etc.

The owner name is often implicit, rather than forming an integral part
of the RR. For example, many name servers internally form tree or hash
structures for the name space, and chain RRs off nodes. The remaining RR
parts are the fixed header (type, class, TTL), which is consistent for
all RRs, and a variable part (RDATA) that fits the needs of the resource
being described.

The TTL field is a time limit on how long an RR can be
kept in a cache. This limit does not apply to authoritative data in
zones; that also times out, but follows the refreshing policies for the
zone. The TTL is assigned by the administrator for the zone where the
data originates. While short TTLs can be used to minimize caching, and a
zero TTL prohibits caching, the realities of Internet performance
suggest that these times should be on the order of days for the typical
host. If a change is anticipated, the TTL can be reduced prior to
the change to minimize inconsistency, and then
increased back to its former value following the change.

The data in the RDATA section of RRs is carried as a combination of
binary strings and domain names. The domain names are frequently used as
“pointers” to other data in the DNS.

4.3.1.2. Textual Expression of RRs

RRs are represented in binary form in the packets of the DNS protocol,
and are usually represented in highly encoded form when stored in a name
server or resolver. In the examples provided in RFC 1034 [https://tools.ietf.org/html/rfc1034.html], a style
similar to that used in primary files was employed in order to show the
contents of RRs. In this format, most RRs are shown on a single line,
although continuation lines are possible using parentheses.

The start of the line gives the owner of the RR. If a line begins with a
blank, then the owner is assumed to be the same as that of the previous
RR. Blank lines are often included for readability.

Following the owner are listed the TTL, type, and class of the RR. Class
and type use the mnemonics defined above, and TTL is an integer before
the type field. To avoid ambiguity in parsing, type and class
mnemonics are disjoint, TTLs are integers, and the type mnemonic is
always last. The IN class and TTL values are often omitted from examples
in the interest of clarity.

The resource data or RDATA section of the RR is given using knowledge
of the typical representation for the data.

For example, the RRs carried in a message might be shown as:

	ISI.EDU.

	MX

	10 VENERA.ISI.EDU.

	
	MX

	10 VAXA.ISI.EDU

	VENERA.ISI.EDU

	A

	128.9.0.32

	
	A

	10.1.0.52

	VAXA.ISI.EDU

	A

	10.2.0.27

	
	A

	128.9.0.33

The MX RRs have an RDATA section which consists of a 16-bit number
followed by a domain name. The address RRs use a standard IP address
format to contain a 32-bit Internet address.

The above example shows six RRs, with two RRs at each of three domain
names.

Here is another possible example:

	XX.LCS.MIT.EDU.

	IN A

	10.0.0.44

	
	CH A

	MIT.EDU. 2420

This shows two addresses for XX.LCS.MIT.EDU, each of a
different class.

4.3.2. Discussion of MX Records

As described above, domain servers store information as a series of
resource records, each of which contains a particular piece of
information about a given domain name (which is usually, but not always,
a host). The simplest way to think of an RR is as a typed pair of data, a
domain name matched with a relevant datum and stored with some
additional type information, to help systems determine when the RR is
relevant.

MX records are used to control delivery of email. The data specified in
the record is a priority and a domain name. The priority controls the
order in which email delivery is attempted, with the lowest number
first. If two priorities are the same, a server is chosen randomly. If
no servers at a given priority are responding, the mail transport agent
falls back to the next largest priority. Priority numbers do not
have any absolute meaning; they are relevant only respective to other
MX records for that domain name. The domain name given is the machine to
which the mail is delivered. It must have an associated address
record (A or AAAA); CNAME is not sufficient.

For a given domain, if there is both a CNAME record and an MX record,
the MX record is in error and is ignored. Instead, the mail is
delivered to the server specified in the MX record pointed to by the
CNAME. For example:

	example.com.

	IN

	MX

	10

	mail.example.com.

	
	IN

	MX

	10

	mail2.example.com.

	
	IN

	MX

	20

	mail.backup.org.

	mail.example.com.

	IN

	A

	10.0.0.1

	

	mail2.example.com.

	IN

	A

	10.0.0.2

	

Mail delivery is attempted to mail.example.com and
mail2.example.com (in any order); if neither of those succeeds,
delivery to mail.backup.org is attempted.

4.3.3. Setting TTLs

The time-to-live (TTL) of the RR field is a 32-bit integer represented in
units of seconds, and is primarily used by resolvers when they cache
RRs. The TTL describes how long an RR can be cached before it should be
discarded. The following three types of TTLs are currently used in a zone
file.

	SOA

	The last field in the SOA is the negative caching TTL. This controls how long other servers cache no-such-domain (NXDOMAIN) responses from this server.

The maximum time for negative caching is 3 hours (3h).

	$TTL

	The $TTL directive at the top of the zone file (before the SOA) gives a default TTL for every RR without a specific TTL set.

	RR TTLs

	Each RR can have a TTL as the second field in the RR, which controls how long other servers can cache it.

All of these TTLs default to units of seconds, though units can be
explicitly specified: for example, 1h30m.

4.3.4. Inverse Mapping in IPv4

Reverse name resolution (that is, translation from IP address to name)
is achieved by means of the in-addr.arpa domain and PTR records.
Entries in the in-addr.arpa domain are made in least-to-most significant
order, read left to right. This is the opposite order to the way IP
addresses are usually written. Thus, a machine with an IP address of
10.1.2.3 would have a corresponding in-addr.arpa name of
3.2.1.10.in-addr.arpa. This name should have a PTR resource record whose
data field is the name of the machine or, optionally, multiple PTR
records if the machine has more than one name. For example, in the
example.com domain:

	$ORIGIN

	2.1.10.in-addr.arpa

	3

	IN PTR foo.example.com.

Note

The $ORIGIN line in this example is only to provide context;
it does not necessarily appear in the actual
usage. It is only used here to indicate that the example is
relative to the listed origin.

4.3.5. Other Zone File Directives

The DNS “master file” format was initially defined in RFC 1035 [https://tools.ietf.org/html/rfc1035.html] and has
subsequently been extended. While the format itself is class-independent,
all records in a zone file must be of the same class.

Master file directives include $ORIGIN, $INCLUDE, and $TTL.

4.3.5.1. The @ (at-sign)

When used in the label (or name) field, the asperand or at-sign (@)
symbol represents the current origin. At the start of the zone file, it
is the <zone_name>, followed by a trailing dot (.).

4.3.5.2. The $ORIGIN Directive

Syntax: $ORIGIN domain-name [comment]

$ORIGIN sets the domain name that is appended to any
unqualified records. When a zone is first read, there is an implicit
$ORIGIN <zone_name>``.``; note the trailing dot. The
current $ORIGIN is appended to the domain specified in the
$ORIGIN argument if it is not absolute.

$ORIGIN example.com.
WWW CNAME MAIN-SERVER

is equivalent to

WWW.EXAMPLE.COM. CNAME MAIN-SERVER.EXAMPLE.COM.

4.3.5.3. The $INCLUDE Directive

Syntax: $INCLUDE filename [origin] [comment]

This reads and processes the file filename as if it were included in the
file at this point. If origin is specified, the file is processed
with $ORIGIN set to that value; otherwise, the current $ORIGIN is
used.

The origin and the current domain name revert to the values they had
prior to the $INCLUDE once the file has been read.

Note

RFC 1035 [https://tools.ietf.org/html/rfc1035.html] specifies that the current origin should be restored after
an $INCLUDE, but it is silent on whether the current domain name
should also be restored. BIND 9 restores both of them. This could be
construed as a deviation from RFC 1035 [https://tools.ietf.org/html/rfc1035.html], a feature, or both.

4.3.5.4. The $TTL Directive

Syntax: $TTL default-ttl [comment]

This sets the default Time-To-Live (TTL) for subsequent records with undefined
TTLs. Valid TTLs are of the range 0-2147483647 seconds.

$TTL is defined in RFC 2308 [https://tools.ietf.org/html/rfc2308.html].

4.3.6. BIND Primary File Extension: the $GENERATE Directive

Syntax: $GENERATE range lhs [ttl] [class] type rhs [comment]

$GENERATE is used to create a series of resource records that only
differ from each other by an iterator. $GENERATE can be used to
easily generate the sets of records required to support sub-/24 reverse
delegations described in RFC 2317 [https://tools.ietf.org/html/rfc2317.html].

$ORIGIN 0.0.192.IN-ADDR.ARPA.
$GENERATE 1-2 @ NS SERVER$.EXAMPLE.
$GENERATE 1-127 $ CNAME $.0

is equivalent to

0.0.0.192.IN-ADDR.ARPA. NS SERVER1.EXAMPLE.
0.0.0.192.IN-ADDR.ARPA. NS SERVER2.EXAMPLE.
1.0.0.192.IN-ADDR.ARPA. CNAME 1.0.0.0.192.IN-ADDR.ARPA.
2.0.0.192.IN-ADDR.ARPA. CNAME 2.0.0.0.192.IN-ADDR.ARPA.
...
127.0.0.192.IN-ADDR.ARPA. CNAME 127.0.0.0.192.IN-ADDR.ARPA.

Both generate a set of A and MX records. Note the MX’s right-hand side is a
quoted string. The quotes are stripped when the right-hand side is
processed.

$ORIGIN EXAMPLE.
$GENERATE 1-127 HOST-$ A 1.2.3.$
$GENERATE 1-127 HOST-$ MX "0 ."

is equivalent to

HOST-1.EXAMPLE. A 1.2.3.1
HOST-1.EXAMPLE. MX 0 .
HOST-2.EXAMPLE. A 1.2.3.2
HOST-2.EXAMPLE. MX 0 .
HOST-3.EXAMPLE. A 1.2.3.3
HOST-3.EXAMPLE. MX 0 .
...
HOST-127.EXAMPLE. A 1.2.3.127
HOST-127.EXAMPLE. MX 0 .

	range

	This can be one of two forms: start-stop or start-stop/step. If the first form is used, then step is set to 1. “start”, “stop”, and “step” must be positive integers between 0 and (2^31)-1. “start” must not be larger than “stop”.

	owner

	This describes the owner name of the resource records to be created. Any single $ (dollar sign) symbols within the owner string are replaced by the iterator value. To get a $ in the output, escape the $ using a backslash \, e.g., \$. The $ may optionally be followed by modifiers which change the offset from the iterator, field width, and base.

Modifiers are introduced by a { (left brace) immediately following the $, as in ${offset[,width[,base]]}. For example, ${-20,3,d} subtracts 20 from the current value and prints the result as a decimal in a zero-padded field of width 3. Available output forms are decimal (d), octal (o), hexadecimal (x or X for uppercase), and nibble (n or N for uppercase).

The default modifier is ${0,0,d}. If the owner is not absolute, the current $ORIGIN is appended to the name.

In nibble mode, the value is treated as if it were a reversed hexadecimal string, with each hexadecimal digit as a separate label. The width field includes the label separator.

For compatibility with earlier versions, $$ is still recognized as indicating a literal $ in the output.

	ttl

	This specifies the time-to-live of the generated records. If not specified, this is inherited using the normal TTL inheritance rules.

class and ttl can be entered in either order.

	class

	This specifies the class of the generated records. This must match the zone class if it is specified.

class and ttl can be entered in either order.

	type

	This can be any valid type.

	rdata

	This is a string containing the RDATA of the resource record to be created. It may be quoted if there are spaces in the string; the quotation marks do not appear in the generated record.

The $GENERATE directive is a BIND extension and not part of the
standard zone file format.

4.3.7. Additional File Formats

In addition to the standard text format, BIND 9 supports the ability
to read or dump to zone files in other formats.

The raw format is a binary representation of zone data in a manner
similar to that used in zone transfers. Since it does not require
parsing text, load time is significantly reduced.

An even faster alternative is the map format, which is an image of a
BIND 9 in-memory zone database; it can be loaded directly
into memory via the mmap() function and the zone can begin serving
queries almost immediately.

For a primary server, a zone file in raw or map format is
expected to be generated from a textual zone file by the
named-compilezone command. For a secondary server or a dynamic
zone, the zone file is automatically generated when named dumps the zone contents
after zone transfer or when applying prior updates, if one of these
formats is specified by the masterfile-format option.

If a zone file in a binary format needs manual modification, it first
must be converted to a textual form by the named-compilezone
command. Make any necessary modifications to the text file, and
then convert it to the binary form via the named-compilezone
command again.

Note that map format is extremely architecture-specific. A map
file cannot be used on a system with different pointer size,
endianness, or data alignment than the system on which it was generated,
and should in general be used only inside a single system. While raw
format uses network byte order and avoids architecture-dependent data
alignment so that it is as portable as possible, it is also primarily
expected to be used inside the same single system. To export a zone file
in either raw or map format, or make a portable backup of such a
file, conversion to text format is recommended.

4.4. BIND 9 Statistics

BIND 9 maintains lots of statistics information and provides several
interfaces for users to access those statistics. The available
statistics include all statistics counters that are meaningful in BIND 9,
and other information that is considered useful.

The statistics information is categorized into the following sections:

	Incoming Requests

	The number of incoming DNS requests for each OPCODE.

	Incoming Queries

	The number of incoming queries for each RR type.

	Outgoing Queries

	The number of outgoing queries for each RR type sent from the internal
resolver, maintained per view.

	Name Server Statistics

	Statistics counters for incoming request processing.

	Zone Maintenance Statistics

	Statistics counters regarding zone maintenance operations, such as zone
transfers.

	Resolver Statistics

	Statistics counters for name resolutions performed in the internal resolver,
maintained per view.

	Cache DB RRsets

	Statistics counters related to cache contents, maintained per view.

The “NXDOMAIN” counter is the number of names that have been cached as
nonexistent. Counters named for RR types indicate the number of active
RRsets for each type in the cache database.

If an RR type name is preceded by an exclamation point (!), it represents the
number of records in the cache which indicate that the type does not exist
for a particular name; this is also known as “NXRRSET”. If an RR type name
is preceded by a hash mark (#), it represents the number of RRsets for this
type that are present in the cache but whose TTLs have expired; these RRsets
may only be used if stale answers are enabled. If an RR type name is
preceded by a tilde (~), it represents the number of RRsets for this type
that are present in the cache database but are marked for garbage collection;
these RRsets cannot be used.

	Socket I/O Statistics

	Statistics counters for network-related events.

A subset of Name Server Statistics is collected and shown per zone for
which the server has the authority, when zone-statistics is set to
full (or yes), for backward compatibility. See the description of
zone-statistics in options Statement Definition and Usage for further details.

These statistics counters are shown with their zone and view names. The
view name is omitted when the server is not configured with explicit
views.

There are currently two user interfaces to get access to the statistics.
One is in plain-text format, dumped to the file specified by the
statistics-file configuration option; the other is remotely
accessible via a statistics channel when the statistics-channels
statement is specified in the configuration file (see statistics-channels Statement Grammar.)

4.4.1. The Statistics File

The text format statistics dump begins with a line, like:

+++ Statistics Dump +++ (973798949)

The number in parentheses is a standard Unix-style timestamp, measured
in seconds since January 1, 1970. Following that line is a set of
statistics information, which is categorized as described above. Each
section begins with a line, like:

++ Name Server Statistics ++

Each section consists of lines, each containing the statistics counter
value followed by its textual description; see below for available
counters. For brevity, counters that have a value of 0 are not shown in
the statistics file.

The statistics dump ends with the line where the number is identical to
the number in the beginning line; for example:

--- Statistics Dump --- (973798949)

4.4.2. Statistics Counters

The following lists summarize the statistics counters that BIND 9 provides.
For each counter, the abbreviated
symbol name is given; these symbols are shown in the statistics
information accessed via an HTTP statistics channel.
The description of the counter is also shown in the
statistics file but, in this document, may be slightly
modified for better readability.

4.4.2.1. Name Server Statistics Counters

	Requestv4

	This indicates the number of IPv4 requests received. Note: this also counts non-query requests.

	Requestv6

	This indicates the number of IPv6 requests received. Note: this also counts non-query requests.

	ReqEdns0

	This indicates the number of requests received with EDNS(0).

	ReqBadEDN SVer

	This indicates the number of requests received with an unsupported EDNS version.

	ReqTSIG

	This indicates the number of requests received with TSIG.

	ReqSIG0

	This indicates the number of requests received with SIG(0).

	ReqBadSIG

	This indicates the number of requests received with an invalid (TSIG or SIG(0)) signature.

	ReqTCP

	This indicates the number of TCP requests received.

	AuthQryRej

	This indicates the number of rejected authoritative (non-recursive) queries.

	RecQryRej

	This indicates the number of rejected recursive queries.

	XfrRej

	This indicates the number of rejected zone transfer requests.

	UpdateRej

	This indicates the number of rejected dynamic update requests.

	Response

	This indicates the number of responses sent.

	RespTruncated

	This indicates the number of truncated responses sent.

	RespEDNS0

	This indicates the number of responses sent with EDNS(0).

	RespTSIG

	This indicates the number of responses sent with TSIG.

	RespSIG0

	This indicates the number of responses sent with SIG(0).

	QrySuccess

	This indicates the number of queries that resulted in a successful answer, meaning queries which return a NOERROR response with at least one answer RR. This corresponds to the success counter of previous versions of BIND 9.

	QryAuthAns

	This indicates the number of queries that resulted in an authoritative answer.

	QryNoauthAns

	This indicates the number of queries that resulted in a non-authoritative answer.

	QryReferral

	This indicates the number of queries that resulted in a referral answer. This corresponds to the referral counter of previous versions of BIND 9.

	QryNxrrset

	This indicates the number of queries that resulted in NOERROR responses with no data. This corresponds to the nxrrset counter of previous versions of BIND 9.

	QrySERVFAIL

	This indicates the number of queries that resulted in SERVFAIL.

	QryFORMERR

	This indicates the number of queries that resulted in FORMERR.

	QryNXDOMAIN

	This indicates the number of queries that resulted in NXDOMAIN. This corresponds to the nxdomain counter of previous versions of BIND 9.

	QryRecursion

	This indicates the number of queries that caused the server to perform recursion in order to find the final answer. This corresponds to the recursion counter of previous versions of BIND 9.

	QryDuplicate

	This indicates the number of queries which the server attempted to recurse but for which it discovered an existing query with the same IP address, port, query ID, name, type, and class already being processed. This corresponds to the duplicate counter of previous versions of BIND 9.

	QryDropped

	This indicates the number of recursive queries for which the server discovered an excessive number of existing recursive queries for the same name, type, and class, and which were subsequently dropped. This is the number of dropped queries due to the reason explained with the clients-per-query and max-clients-per-query options (see clients-per-query). This corresponds to the dropped counter of previous versions of BIND 9.

	QryFailure

	This indicates the number of query failures. This corresponds to the failure counter of previous versions of BIND 9. Note: this counter is provided mainly for backward compatibility with previous versions; normally, more fine-grained counters such as AuthQryRej and RecQryRej that would also fall into this counter are provided, so this counter is not of much interest in practice.

	QryNXRedir

	This indicates the number of queries that resulted in NXDOMAIN that were redirected.

	QryNXRedirRLookup

	This indicates the number of queries that resulted in NXDOMAIN that were redirected and resulted in a successful remote lookup.

	XfrReqDone

	This indicates the number of requested and completed zone transfers.

	UpdateReqFwd

	This indicates the number of forwarded update requests.

	UpdateRespFwd

	This indicates the number of forwarded update responses.

	UpdateFwdFail

	This indicates the number of forwarded dynamic updates that failed.

	UpdateDone

	This indicates the number of completed dynamic updates.

	UpdateFail

	This indicates the number of failed dynamic updates.

	UpdateBadPrereq

	This indicates the number of dynamic updates rejected due to a prerequisite failure.

	RateDropped

	This indicates the number of responses dropped due to rate limits.

	RateSlipped

	This indicates the number of responses truncated by rate limits.

	RPZRewrites

	This indicates the number of response policy zone rewrites.

4.4.2.2. Zone Maintenance Statistics Counters

	NotifyOutv4

	This indicates the number of IPv4 notifies sent.

	NotifyOutv6

	This indicates the number of IPv6 notifies sent.

	NotifyInv4

	This indicates the number of IPv4 notifies received.

	NotifyInv6

	This indicates the number of IPv6 notifies received.

	NotifyRej

	This indicates the number of incoming notifies rejected.

	SOAOutv4

	This indicates the number of IPv4 SOA queries sent.

	SOAOutv6

	This indicates the number of IPv6 SOA queries sent.

	AXFRReqv4

	This indicates the number of requested IPv4 AXFRs.

	AXFRReqv6

	This indicates the number of requested IPv6 AXFRs.

	IXFRReqv4

	This indicates the number of requested IPv4 IXFRs.

	IXFRReqv6

	This indicates the number of requested IPv6 IXFRs.

	XfrSuccess

	This indicates the number of successful zone transfer requests.

	XfrFail

	This indicates the number of failed zone transfer requests.

4.4.2.3. Resolver Statistics Counters

	Queryv4

	This indicates the number of IPv4 queries sent.

	Queryv6

	This indicates the number of IPv6 queries sent.

	Responsev4

	This indicates the number of IPv4 responses received.

	Responsev6

	This indicates the number of IPv6 responses received.

	NXDOMAIN

	This indicates the number of NXDOMAINs received.

	SERVFAIL

	This indicates the number of SERVFAILs received.

	FORMERR

	This indicates the number of FORMERRs received.

	OtherError

	This indicates the number of other errors received.

	EDNS0Fail

	This indicates the number of EDNS(0) query failures.

	Mismatch

	This indicates the number of mismatched responses received, meaning the DNS ID, response’s source address, and/or the response’s source port does not match what was expected. (The port must be 53 or as defined by the port option.) This may be an indication of a cache poisoning attempt.

	Truncated

	This indicates the number of truncated responses received.

	Lame

	This indicates the number of lame delegations received.

	Retry

	This indicates the number of query retries performed.

	QueryAbort

	This indicates the number of queries aborted due to quota control.

	QuerySockFail

	This indicates the number of failures in opening query sockets. One common reason for such failures is due to a limitation on file descriptors.

	QueryTimeout

	This indicates the number of query timeouts.

	GlueFetchv4

	This indicates the number of IPv4 NS address fetches invoked.

	GlueFetchv6

	This indicates the number of IPv6 NS address fetches invoked.

	GlueFetchv4Fail

	This indicates the number of failed IPv4 NS address fetches.

	GlueFetchv6Fail

	This indicates the number of failed IPv6 NS address fetches.

	ValAttempt

	This indicates the number of attempted DNSSEC validations.

	ValOk

	This indicates the number of successful DNSSEC validations.

	ValNegOk

	This indicates the number of successful DNSSEC validations on negative information.

	ValFail

	This indicates the number of failed DNSSEC validations.

	QryRTTnn

	This provides a frequency table on query round-trip times (RTTs). Each nn specifies the corresponding frequency. In the sequence of nn_1, nn_2, …, nn_m, the value of nn_i is the number of queries whose RTTs are between nn_(i-1) (inclusive) and nn_i (exclusive) milliseconds. For the sake of convenience, we define nn_0 to be 0. The last entry should be represented as nn_m+, which means the number of queries whose RTTs are equal to or greater than nn_m milliseconds.

4.4.2.4. Socket I/O Statistics Counters

Socket I/O statistics counters are defined per socket type, which are
UDP4 (UDP/IPv4), UDP6 (UDP/IPv6), TCP4 (TCP/IPv4), TCP6
(TCP/IPv6), Unix (Unix Domain), and FDwatch (sockets opened
outside the socket module). In the following list, <TYPE> represents
a socket type. Not all counters are available for all socket types;
exceptions are noted in the descriptions.

	<TYPE>Open

	This indicates the number of sockets opened successfully. This counter does not apply to the FDwatch type.

	<TYPE>OpenFail

	This indicates the number of failures to open sockets. This counter does not apply to the FDwatch type.

	<TYPE>Close

	This indicates the number of closed sockets.

	<TYPE>BindFail

	This indicates the number of failures to bind sockets.

	<TYPE>ConnFail

	This indicates the number of failures to connect sockets.

	<TYPE>Conn

	This indicates the number of connections established successfully.

	<TYPE>AcceptFail

	This indicates the number of failures to accept incoming connection requests. This counter does not apply to the UDP and FDwatch types.

	<TYPE>Accept

	This indicates the number of incoming connections successfully accepted. This counter does not apply to the UDP and FDwatch types.

	<TYPE>SendErr

	This indicates the number of errors in socket send operations.

	<TYPE>RecvErr

	This indicates the number of errors in socket receive operations, including errors of send operations on a connected UDP socket, notified by an ICMP error message.

5. Advanced DNS Features

5.1. Notify

DNS NOTIFY is a mechanism that allows primary servers to notify their
secondary servers of changes to a zone’s data. In response to a NOTIFY
from a primary server, the secondary checks to see that its version of
the zone is the current version and, if not, initiates a zone transfer.

For more information about DNS NOTIFY, see the description of the
notify option in Boolean Options and the
description of the zone option also-notify in Zone Transfers.
The NOTIFY protocol is specified in RFC 1996 [https://tools.ietf.org/html/rfc1996.html].

Note

As a secondary zone can also be a primary to other secondaries, named, by
default, sends NOTIFY messages for every zone it loads.
Specifying notify primary-only; causes named to only send
NOTIFY for primary zones that it loads.

5.2. Dynamic Update

Dynamic update is a method for adding, replacing, or deleting records in
a primary server by sending it a special form of DNS messages. The format
and meaning of these messages is specified in RFC 2136 [https://tools.ietf.org/html/rfc2136.html].

Dynamic update is enabled by including an allow-update or an
update-policy clause in the zone statement.

If the zone’s update-policy is set to local, updates to the zone
are permitted for the key local-ddns, which is generated by
named at startup. See Dynamic Update Policies for more details.

Dynamic updates using Kerberos-signed requests can be made using the
TKEY/GSS protocol, either by setting the tkey-gssapi-keytab option
or by setting both the tkey-gssapi-credential and
tkey-domain options. Once enabled, Kerberos-signed requests are
matched against the update policies for the zone, using the Kerberos
principal as the signer for the request.

Updating of secure zones (zones using DNSSEC) follows RFC 3007 [https://tools.ietf.org/html/rfc3007.html]: RRSIG,
NSEC, and NSEC3 records affected by updates are automatically regenerated
by the server using an online zone key. Update authorization is based on
transaction signatures and an explicit server policy.

5.2.1. The Journal File

All changes made to a zone using dynamic update are stored in the zone’s
journal file. This file is automatically created by the server when the
first dynamic update takes place. The name of the journal file is formed
by appending the extension .jnl to the name of the corresponding
zone file, unless specifically overridden. The journal file is in a
binary format and should not be edited manually.

The server also occasionally writes (“dumps”) the complete contents
of the updated zone to its zone file. This is not done immediately after
each dynamic update because that would be too slow when a large zone is
updated frequently. Instead, the dump is delayed by up to 15 minutes,
allowing additional updates to take place. During the dump process,
transient files are created with the extensions .jnw and
.jbk; under ordinary circumstances, these are removed when the
dump is complete, and can be safely ignored.

When a server is restarted after a shutdown or crash, it replays the
journal file to incorporate into the zone any updates that took place
after the last zone dump.

Changes that result from incoming incremental zone transfers are also
journaled in a similar way.

The zone files of dynamic zones cannot normally be edited by hand
because they are not guaranteed to contain the most recent dynamic
changes; those are only in the journal file. The only way to ensure
that the zone file of a dynamic zone is up-to-date is to run
rndc stop.

To make changes to a dynamic zone manually, follow these steps:
first, disable dynamic updates to the zone using
rndc freeze zone. This updates the zone file with the
changes stored in its .jnl file. Then, edit the zone file. Finally, run
rndc thaw zone to reload the changed zone and re-enable dynamic
updates.

rndc sync zone updates the zone file with changes from the
journal file without stopping dynamic updates; this may be useful for
viewing the current zone state. To remove the .jnl file after
updating the zone file, use rndc sync -clean.

5.3. Incremental Zone Transfers (IXFR)

The incremental zone transfer (IXFR) protocol is a way for secondary servers
to transfer only changed data, instead of having to transfer an entire
zone. The IXFR protocol is specified in RFC 1995 [https://tools.ietf.org/html/rfc1995.html]. See Proposed Standards.

When acting as a primary server, BIND 9 supports IXFR for those zones where the
necessary change history information is available. These include primary
zones maintained by dynamic update and secondary zones whose data was
obtained by IXFR. For manually maintained primary zones, and for secondary
zones obtained by performing a full zone transfer (AXFR), IXFR is
supported only if the option ixfr-from-differences is set to
yes.

When acting as a secondary server, BIND 9 attempts to use IXFR unless it is
explicitly disabled. For more information about disabling IXFR, see the
description of the request-ixfr clause of the server statement.

When a secondary server receives a zone via AXFR, it creates a new copy of the
zone database and then swaps it into place; during the loading process, queries
continue to be served from the old database with no interference. When receiving
a zone via IXFR, however, changes are applied to the running zone, which may
degrade query performance during the transfer. If a server receiving an IXFR
request determines that the response size would be similar in size to an AXFR
response, it may wish to send AXFR instead. The threshold at which this
determination is made can be configured using the
max-ixfr-ratio option.

5.4. Split DNS

Setting up different views of the DNS space to internal
and external resolvers is usually referred to as a split DNS setup.
There are several reasons an organization might want to set up its DNS
this way.

One common reason to use split DNS is to hide
“internal” DNS information from “external” clients on the Internet.
There is some debate as to whether this is actually useful.
Internal DNS information leaks out in many ways (via email headers, for
example) and most savvy “attackers” can find the information they need
using other means. However, since listing addresses of internal servers
that external clients cannot possibly reach can result in connection
delays and other annoyances, an organization may choose to use split
DNS to present a consistent view of itself to the outside world.

Another common reason for setting up a split DNS system is to allow
internal networks that are behind filters or in RFC 1918 [https://tools.ietf.org/html/rfc1918.html] space (reserved
IP space, as documented in RFC 1918 [https://tools.ietf.org/html/rfc1918.html]) to resolve DNS on the Internet.
Split DNS can also be used to allow mail from outside back into the
internal network.

5.4.1. Example Split DNS Setup

Let’s say a company named Example, Inc. (example.com) has several
corporate sites that have an internal network with reserved Internet
Protocol (IP) space and an external demilitarized zone (DMZ), or
“outside” section of a network, that is available to the public.

Example, Inc. wants its internal clients to be able to resolve
external hostnames and to exchange mail with people on the outside. The
company also wants its internal resolvers to have access to certain
internal-only zones that are not available at all outside of the
internal network.

To accomplish this, the company sets up two sets of name
servers. One set is on the inside network (in the reserved IP
space) and the other set is on bastion hosts, which are “proxy”
hosts in the DMZ that can talk to both sides of its network.

The internal servers are configured to forward all queries, except
queries for site1.internal, site2.internal,
site1.example.com, and site2.example.com, to the servers in the
DMZ. These internal servers have complete sets of information for
site1.example.com, site2.example.com, site1.internal, and
site2.internal.

To protect the site1.internal and site2.internal domains, the
internal name servers must be configured to disallow all queries to
these domains from any external hosts, including the bastion hosts.

The external servers, which are on the bastion hosts, are configured
to serve the “public” version of the site1.example.com and site2.example.com
zones. This could include things such as the host records for public
servers (www.example.com and ftp.example.com) and mail exchange
(MX) records (a.mx.example.com and b.mx.example.com).

In addition, the public site1.example.com and site2.example.com zones should
have special MX records that contain wildcard (*) records pointing to
the bastion hosts. This is needed because external mail servers
have no other way of determining how to deliver mail to those internal
hosts. With the wildcard records, the mail is delivered to the
bastion host, which can then forward it on to internal hosts.

Here’s an example of a wildcard MX record:

* IN MX 10 external1.example.com.

Now that they accept mail on behalf of anything in the internal network,
the bastion hosts need to know how to deliver mail to internal
hosts. The resolvers on the bastion
hosts need to be configured to point to the internal name servers
for DNS resolution.

Queries for internal hostnames are answered by the internal servers,
and queries for external hostnames are forwarded back out to the DNS
servers on the bastion hosts.

For all of this to work properly, internal clients need to be
configured to query only the internal name servers for DNS queries.
This could also be enforced via selective filtering on the network.

If everything has been set properly, Example, Inc.’s internal clients
are now able to:

	Look up any hostnames in the site1.example.com and site2.example.com
zones.

	Look up any hostnames in the site1.internal and
site2.internal domains.

	Look up any hostnames on the Internet.

	Exchange mail with both internal and external users.

Hosts on the Internet are able to:

	Look up any hostnames in the site1.example.com and site2.example.com
zones.

	Exchange mail with anyone in the site1.example.com and site2.example.com
zones.

Here is an example configuration for the setup just described above.
Note that this is only configuration information; for information on how
to configure the zone files, see Sample Configurations.

Internal DNS server config:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { bastion-ips-go-here; };

options {
 ...
 ...
 forward only;
 // forward to external servers
 forwarders {
 bastion-ips-go-here;
 };
 // sample allow-transfer (no one)
 allow-transfer { none; };
 // restrict query access
 allow-query { internals; externals; };
 // restrict recursion
 allow-recursion { internals; };
 ...
 ...
};

// sample primary zone
zone "site1.example.com" {
 type primary;
 file "m/site1.example.com";
 // do normal iterative resolution (do not forward)
 forwarders { };
 allow-query { internals; externals; };
 allow-transfer { internals; };
};

// sample secondary zone
zone "site2.example.com" {
 type secondary;
 file "s/site2.example.com";
 primaries { 172.16.72.3; };
 forwarders { };
 allow-query { internals; externals; };
 allow-transfer { internals; };
};

zone "site1.internal" {
 type primary;
 file "m/site1.internal";
 forwarders { };
 allow-query { internals; };
 allow-transfer { internals; }
};

zone "site2.internal" {
 type secondary;
 file "s/site2.internal";
 primaries { 172.16.72.3; };
 forwarders { };
 allow-query { internals };
 allow-transfer { internals; }
};

External (bastion host) DNS server configuration:

acl internals { 172.16.72.0/24; 192.168.1.0/24; };

acl externals { bastion-ips-go-here; };

options {
 ...
 ...
 // sample allow-transfer (no one)
 allow-transfer { none; };
 // default query access
 allow-query { any; };
 // restrict cache access
 allow-query-cache { internals; externals; };
 // restrict recursion
 allow-recursion { internals; externals; };
 ...
 ...
};

// sample secondary zone
zone "site1.example.com" {
 type primary;
 file "m/site1.foo.com";
 allow-transfer { internals; externals; };
};

zone "site2.example.com" {
 type secondary;
 file "s/site2.foo.com";
 masters { another_bastion_host_maybe; };
 allow-transfer { internals; externals; }
};

In the resolv.conf (or equivalent) on the bastion host(s):

search ...
nameserver 172.16.72.2
nameserver 172.16.72.3
nameserver 172.16.72.4

5.5. TSIG

TSIG (Transaction SIGnatures) is a mechanism for authenticating DNS
messages, originally specified in RFC 2845 [https://tools.ietf.org/html/rfc2845.html]. It allows DNS messages to be
cryptographically signed using a shared secret. TSIG can be used in any
DNS transaction, as a way to restrict access to certain server functions
(e.g., recursive queries) to authorized clients when IP-based access
control is insufficient or needs to be overridden, or as a way to ensure
message authenticity when it is critical to the integrity of the server,
such as with dynamic UPDATE messages or zone transfers from a primary to
a secondary server.

This section is a guide to setting up TSIG in BIND. It describes the
configuration syntax and the process of creating TSIG keys.

named supports TSIG for server-to-server communication, and some of
the tools included with BIND support it for sending messages to
named:

	nsupdate - dynamic DNS update utility supports TSIG via the -k, -l, and -y command-line options, or via the key command when running interactively.

	dig - DNS lookup utility supports TSIG via the -k and -y command-line options.

5.5.1. Generating a Shared Key

TSIG keys can be generated using the tsig-keygen command; the output
of the command is a key directive suitable for inclusion in
named.conf. The key name, algorithm, and size can be specified by
command-line parameters; the defaults are “tsig-key”, HMAC-SHA256, and
256 bits, respectively.

Any string which is a valid DNS name can be used as a key name. For
example, a key to be shared between servers called host1 and host2
could be called “host1-host2.”, and this key can be generated using:

$ tsig-keygen host1-host2. > host1-host2.key

This key may then be copied to both hosts. The key name and secret must
be identical on both hosts. (Note: copying a shared secret from one
server to another is beyond the scope of the DNS. A secure transport
mechanism should be used: secure FTP, SSL, ssh, telephone, encrypted
email, etc.)

tsig-keygen can also be run as ddns-confgen, in which case its
output includes additional configuration text for setting up dynamic DNS
in named. See ddns-confgen - ddns key generation tool for details.

5.5.2. Loading a New Key

For a key shared between servers called host1 and host2, the
following could be added to each server’s named.conf file:

key "host1-host2." {
 algorithm hmac-sha256;
 secret "DAopyf1mhCbFVZw7pgmNPBoLUq8wEUT7UuPoLENP2HY=";
};

(This is the same key generated above using tsig-keygen.)

Since this text contains a secret, it is recommended that either
named.conf not be world-readable, or that the key directive be
stored in a file which is not world-readable and which is included in
named.conf via the include directive.

Once a key has been added to named.conf and the server has been
restarted or reconfigured, the server can recognize the key. If the
server receives a message signed by the key, it is able to verify
the signature. If the signature is valid, the response is signed
using the same key.

TSIG keys that are known to a server can be listed using the command
rndc tsig-list.

5.5.3. Instructing the Server to Use a Key

A server sending a request to another server must be told whether to use
a key, and if so, which key to use.

For example, a key may be specified for each server in the primaries
statement in the definition of a secondary zone; in this case, all SOA QUERY
messages, NOTIFY messages, and zone transfer requests (AXFR or IXFR)
are signed using the specified key. Keys may also be specified in
the also-notify statement of a primary or secondary zone, causing NOTIFY
messages to be signed using the specified key.

Keys can also be specified in a server directive. Adding the
following on host1, if the IP address of host2 is 10.1.2.3, would
cause all requests from host1 to host2, including normal DNS
queries, to be signed using the host1-host2. key:

server 10.1.2.3 {
 keys { host1-host2. ;};
};

Multiple keys may be present in the keys statement, but only the
first one is used. As this directive does not contain secrets, it can be
used in a world-readable file.

Requests sent by host2 to host1 would not be signed, unless a
similar server directive were in host2’s configuration file.

When any server sends a TSIG-signed DNS request, it expects the
response to be signed with the same key. If a response is not signed, or
if the signature is not valid, the response is rejected.

5.5.4. TSIG-Based Access Control

TSIG keys may be specified in ACL definitions and ACL directives such as
allow-query, allow-transfer, and allow-update. The above key
would be denoted in an ACL element as key host1-host2.

Here is an example of an allow-update directive using a TSIG key:

allow-update { !{ !localnets; any; }; key host1-host2. ;};

This allows dynamic updates to succeed only if the UPDATE request comes
from an address in localnets, and if it is signed using the
host1-host2. key.

See Dynamic Update Policies for a
discussion of the more flexible update-policy statement.

5.5.5. Errors

Processing of TSIG-signed messages can result in several errors:

	If a TSIG-aware server receives a message signed by an unknown key,
the response will be unsigned, with the TSIG extended error code set
to BADKEY.

	If a TSIG-aware server receives a message from a known key but with
an invalid signature, the response will be unsigned, with the TSIG
extended error code set to BADSIG.

	If a TSIG-aware server receives a message with a time outside of the
allowed range, the response will be signed but the TSIG extended
error code set to BADTIME, and the time values will be adjusted so
that the response can be successfully verified.

In all of the above cases, the server returns a response code of
NOTAUTH (not authenticated).

5.6. TKEY

TKEY (Transaction KEY) is a mechanism for automatically negotiating a
shared secret between two hosts, originally specified in RFC 2930 [https://tools.ietf.org/html/rfc2930.html].

There are several TKEY “modes” that specify how a key is to be generated
or assigned. BIND 9 implements only one of these modes: Diffie-Hellman
key exchange. Both hosts are required to have a KEY record with
algorithm DH (though this record is not required to be present in a
zone).

The TKEY process is initiated by a client or server by sending a query
of type TKEY to a TKEY-aware server. The query must include an
appropriate KEY record in the additional section, and must be signed
using either TSIG or SIG(0) with a previously established key. The
server’s response, if successful, contains a TKEY record in its
answer section. After this transaction, both participants have
enough information to calculate a shared secret using Diffie-Hellman key
exchange. The shared secret can then be used to sign subsequent
transactions between the two servers.

TSIG keys known by the server, including TKEY-negotiated keys, can be
listed using rndc tsig-list.

TKEY-negotiated keys can be deleted from a server using
rndc tsig-delete. This can also be done via the TKEY protocol
itself, by sending an authenticated TKEY query specifying the “key
deletion” mode.

5.7. SIG(0)

BIND partially supports DNSSEC SIG(0) transaction signatures as
specified in RFC 2535 [https://tools.ietf.org/html/rfc2535.html] and RFC 2931 [https://tools.ietf.org/html/rfc2931.html]. SIG(0) uses public/private keys to
authenticate messages. Access control is performed in the same manner as with
TSIG keys; privileges can be granted or denied in ACL directives based
on the key name.

When a SIG(0) signed message is received, it is only verified if
the key is known and trusted by the server. The server does not attempt
to recursively fetch or validate the key.

SIG(0) signing of multiple-message TCP streams is not supported.

The only tool shipped with BIND 9 that generates SIG(0) signed messages
is nsupdate.

5.8. DNSSEC

Cryptographic authentication of DNS information is possible through the
DNS Security (“DNSSEC-bis”) extensions, defined in RFC 4033 [https://tools.ietf.org/html/rfc4033.html], RFC 4034 [https://tools.ietf.org/html/rfc4034.html],
and RFC 4035 [https://tools.ietf.org/html/rfc4035.html]. This section describes the creation and use of DNSSEC
signed zones.

In order to set up a DNSSEC secure zone, there are a series of steps
which must be followed. BIND 9 ships with several tools that are used in
this process, which are explained in more detail below. In all cases,
the -h option prints a full list of parameters. Note that the DNSSEC
tools require the keyset files to be in the working directory or the
directory specified by the -d option.

There must also be communication with the administrators of the parent
and/or child zone to transmit keys. A zone’s security status must be
indicated by the parent zone for a DNSSEC-capable resolver to trust its
data. This is done through the presence or absence of a DS record at
the delegation point.

For other servers to trust data in this zone, they must be
statically configured with either this zone’s zone key or the zone key of
another zone above this one in the DNS tree.

5.8.1. Generating Keys

The dnssec-keygen program is used to generate keys.

A secure zone must contain one or more zone keys. The zone keys
sign all other records in the zone, as well as the zone keys of any
secure delegated zones. Zone keys must have the same name as the zone, have a
name type of ZONE, and be usable for authentication. It is
recommended that zone keys use a cryptographic algorithm designated as
“mandatory to implement” by the IETF. Currently there are two algorithms,
RSASHA256 and ECDSAP256SHA256; ECDSAP256SHA256 is recommended for
current and future deployments.

The following command generates a ECDSAP256SHA256 key for the
child.example zone:

dnssec-keygen -a ECDSAP256SHA256 -n ZONE child.example.

Two output files are produced: Kchild.example.+013+12345.key and
Kchild.example.+013+12345.private (where 12345 is an example of a
key tag). The key filenames contain the key name (child.example.),
the algorithm (5 is RSASHA1, 8 is RSASHA256, 13 is ECDSAP256SHA256, 15 is
ED25519, etc.), and the key tag (12345 in this case). The private key (in
the .private file) is used to generate signatures, and the public
key (in the .key file) is used for signature verification.

To generate another key with the same properties but with a different
key tag, repeat the above command.

The dnssec-keyfromlabel program is used to get a key pair from a
crypto hardware device and build the key files. Its usage is similar to
dnssec-keygen.

The public keys should be inserted into the zone file by including the
.key files using $INCLUDE statements.

5.8.2. Signing the Zone

The dnssec-signzone program is used to sign a zone.

Any keyset files corresponding to secure sub-zones should be
present. The zone signer generates NSEC, NSEC3, and RRSIG
records for the zone, as well as DS for the child zones if -g
is specified. If -g is not specified, then DS RRsets for the
secure child zones need to be added manually.

By default, all zone keys which have an available private key are used
to generate signatures. The following command signs the zone, assuming
it is in a file called zone.child.example:

dnssec-signzone -o child.example zone.child.example

One output file is produced: zone.child.example.signed. This file
should be referenced by named.conf as the input file for the zone.

dnssec-signzone also produces keyset and dsset files. These are used
to provide the parent zone administrators with the DNSKEYs (or their
corresponding DS records) that are the secure entry point to the zone.

5.8.3. Configuring Servers for DNSSEC

To enable named to validate answers received from other servers, the
dnssec-validation option must be set to either yes or auto.

When dnssec-validation is set to auto, a trust anchor for the
DNS root zone is automatically used. This trust anchor is provided
as part of BIND and is kept up to date using RFC 5011 [https://tools.ietf.org/html/rfc5011.html] key management.

When dnssec-validation is set to yes, DNSSEC validation
only occurs if at least one trust anchor has been explicitly configured
in named.conf, using a trust-anchors statement (or the
managed-keys and trusted-keys statements, both deprecated).

When dnssec-validation is set to no, DNSSEC validation does not
occur.

The default is auto unless BIND is built with
configure --disable-auto-validation, in which case the default is
yes.

The keys specified in trust-anchors are copies of DNSKEY RRs for zones that are
used to form the first link in the cryptographic chain of trust. Keys configured
with the keyword static-key or static-ds are loaded directly into the
table of trust anchors, and can only be changed by altering the
configuration. Keys configured with initial-key or initial-ds are used
to initialize RFC 5011 [https://tools.ietf.org/html/rfc5011.html] trust anchor maintenance, and are kept up-to-date
automatically after the first time named runs.

trust-anchors is described in more detail later in this document.

BIND 9 does not verify signatures on load, so zone keys
for authoritative zones do not need to be specified in the configuration
file.

After DNSSEC is established, a typical DNSSEC configuration looks
something like the following. It has one or more public keys for the
root, which allows answers from outside the organization to be validated.
It also has several keys for parts of the namespace that the
organization controls. These are here to ensure that named is immune
to compromised security in the DNSSEC components of parent zones.

trust-anchors {
 /* Root Key */
 "." initial-key 257 3 3 "BNY4wrWM1nCfJ+CXd0rVXyYmobt7sEEfK3clRbGaTwS
 JxrGkxJWoZu6I7PzJu/E9gx4UC1zGAHlXKdE4zYIpRh
 aBKnvcC2U9mZhkdUpd1Vso/HAdjNe8LmMlnzY3zy2Xy
 4klWOADTPzSv9eamj8V18PHGjBLaVtYvk/ln5ZApjYg
 hf+6fElrmLkdaz MQ2OCnACR817DF4BBa7UR/beDHyp
 5iWTXWSi6XmoJLbG9Scqc7l70KDqlvXR3M/lUUVRbke
 g1IPJSidmK3ZyCllh4XSKbje/45SKucHgnwU5jefMtq
 66gKodQj+MiA21AfUVe7u99WzTLzY3qlxDhxYQQ20FQ
 97S+LKUTpQcq27R7AT3/V5hRQxScINqwcz4jYqZD2fQ
 dgxbcDTClU0CRBdiieyLMNzXG3";
 /* Key for our organization's forward zone */
 example.com. static-ds 54135 5 2 "8EF922C97F1D07B23134440F19682E7519ADDAE180E20B1B1EC52E7F58B2831D"

 /* Key for our reverse zone. */
 2.0.192.IN-ADDRPA.NET. static-key 257 3 5 "AQOnS4xn/IgOUpBPJ3bogzwc
 xOdNax071L18QqZnQQQAVVr+i
 LhGTnNGp3HoWQLUIzKrJVZ3zg
 gy3WwNT6kZo6c0tszYqbtvchm
 gQC8CzKojM/W16i6MG/eafGU3
 siaOdS0yOI6BgPsw+YZdzlYMa
 IJGf4M4dyoKIhzdZyQ2bYQrjy
 Q4LB0lC7aOnsMyYKHHYeRvPxj
 IQXmdqgOJGq+vsevG06zW+1xg
 YJh9rCIfnm1GX/KMgxLPG2vXT
 D/RnLX+D3T3UL7HJYHJhAZD5L
 59VvjSPsZJHeDCUyWYrvPZesZ
 DIRvhDD52SKvbheeTJUm6Ehkz
 ytNN2SN96QRk8j/iI8ib";
};

options {
 ...
 dnssec-validation yes;
};

Note

None of the keys listed in this example are valid. In particular, the
root key is not valid.

When DNSSEC validation is enabled and properly configured, the resolver
rejects any answers from signed, secure zones which fail to
validate, and returns SERVFAIL to the client.

Responses may fail to validate for any of several reasons, including
missing, expired, or invalid signatures, a key which does not match the
DS RRset in the parent zone, or an insecure response from a zone which,
according to its parent, should have been secure.

Note

When the validator receives a response from an unsigned zone that has
a signed parent, it must confirm with the parent that the zone was
intentionally left unsigned. It does this by verifying, via signed
and validated NSEC/NSEC3 records, that the parent zone contains no DS
records for the child.

If the validator can prove that the zone is insecure, then the
response is accepted. However, if it cannot, the validator must assume an
insecure response to be a forgery; it rejects the response and logs
an error.

The logged error reads “insecurity proof failed” and “got insecure
response; parent indicates it should be secure.”

5.9. DNSSEC, Dynamic Zones, and Automatic Signing

5.9.1. Converting From Insecure to Secure

A zone can be changed from insecure to secure in two ways: using a
dynamic DNS update, or via the auto-dnssec zone option.

For either method, named must be configured so that it can see
the K* files which contain the public and private parts of the keys
that are used to sign the zone. These files are generated
by dnssec-keygen, and they should be placed in the
key-directory, as specified in named.conf:

zone example.net {
 type primary;
 update-policy local;
 file "dynamic/example.net/example.net";
 key-directory "dynamic/example.net";
};

If one KSK and one ZSK DNSKEY key have been generated, this
configuration causes all records in the zone to be signed with the
ZSK, and the DNSKEY RRset to be signed with the KSK. An NSEC
chain is generated as part of the initial signing process.

5.9.2. Dynamic DNS Update Method

To insert the keys via dynamic update:

% nsupdate
> ttl 3600
> update add example.net DNSKEY 256 3 7 AwEAAZn17pUF0KpbPA2c7Gz76Vb18v0teKT3EyAGfBfL8eQ8al35zz3Y I1m/SAQBxIqMfLtIwqWPdgthsu36azGQAX8=
> update add example.net DNSKEY 257 3 7 AwEAAd/7odU/64o2LGsifbLtQmtO8dFDtTAZXSX2+X3e/UNlq9IHq3Y0 XtC0Iuawl/qkaKVxXe2lo8Ct+dM6UehyCqk=
> send

While the update request completes almost immediately, the zone is
not completely signed until named has had time to “walk” the zone
and generate the NSEC and RRSIG records. The NSEC record at the apex
is added last, to signal that there is a complete NSEC chain.

To sign using NSEC3 instead of NSEC, add an
NSEC3PARAM record to the initial update request. The OPTOUT bit in the NSEC3
chain can be set in the flags field of the
NSEC3PARAM record.

% nsupdate
> ttl 3600
> update add example.net DNSKEY 256 3 7 AwEAAZn17pUF0KpbPA2c7Gz76Vb18v0teKT3EyAGfBfL8eQ8al35zz3Y I1m/SAQBxIqMfLtIwqWPdgthsu36azGQAX8=
> update add example.net DNSKEY 257 3 7 AwEAAd/7odU/64o2LGsifbLtQmtO8dFDtTAZXSX2+X3e/UNlq9IHq3Y0 XtC0Iuawl/qkaKVxXe2lo8Ct+dM6UehyCqk=
> update add example.net NSEC3PARAM 1 1 100 1234567890
> send

Again, this update request completes almost immediately; however,
the record does not show up until named has had a chance to
build/remove the relevant chain. A private type record is created
to record the state of the operation (see below for more details), and
is removed once the operation completes.

While the initial signing and NSEC/NSEC3 chain generation is happening,
other updates are possible as well.

5.9.3. Fully Automatic Zone Signing

To enable automatic signing, add the auto-dnssec option to the zone
statement in named.conf. auto-dnssec has two possible arguments:
allow or maintain.

With auto-dnssec allow, named can search the key directory for
keys matching the zone, insert them into the zone, and use them to sign
the zone. It does so only when it receives an
rndc sign <zonename>.

auto-dnssec maintain includes the above functionality, but also
automatically adjusts the zone’s DNSKEY records on a schedule according to
the keys’ timing metadata. (See dnssec-keygen: DNSSEC key generation tool and
dnssec-settime: set the key timing metadata for a DNSSEC key for more information.)

named periodically searches the key directory for keys matching
the zone; if the keys’ metadata indicates that any change should be
made to the zone - such as adding, removing, or revoking a key - then that
action is carried out. By default, the key directory is checked for
changes every 60 minutes; this period can be adjusted with
dnssec-loadkeys-interval, up to a maximum of 24 hours. The
rndc loadkeys command forces named to check for key updates immediately.

If keys are present in the key directory the first time the zone is
loaded, the zone is signed immediately, without waiting for an
rndc sign or rndc loadkeys command. Those commands can still be
used when there are unscheduled key changes.

When new keys are added to a zone, the TTL is set to match that of any
existing DNSKEY RRset. If there is no existing DNSKEY RRset, the
TTL is set to the TTL specified when the key was created (using the
dnssec-keygen -L option), if any, or to the SOA TTL.

To sign the zone using NSEC3 instead of NSEC, submit an
NSEC3PARAM record via dynamic update prior to the scheduled publication
and activation of the keys. The OPTOUT bit for the NSEC3 chain can be set
in the flags field of the NSEC3PARAM record. The
NSEC3PARAM record does not appear in the zone immediately, but it is
stored for later reference. When the zone is signed and the NSEC3
chain is completed, the NSEC3PARAM record appears in the zone.

Using the auto-dnssec option requires the zone to be configured to
allow dynamic updates, by adding an allow-update or
update-policy statement to the zone configuration. If this has not
been done, the configuration fails.

5.9.4. Private Type Records

The state of the signing process is signaled by private type records
(with a default type value of 65534). When signing is complete, those
records with a non-zero initial octet have a non-zero value for the final octet.

If the first octet of a private type record is non-zero, the
record indicates either that the zone needs to be signed with the key matching
the record, or that all signatures that match the record should be
removed. Here are the meanings of the different values of the first octet:

	algorithm (octet 1)

	key id in network order (octet 2 and 3)

	removal flag (octet 4)

	complete flag (octet 5)

Only records flagged as “complete” can be removed via dynamic update; attempts
to remove other private type records are silently ignored.

If the first octet is zero (this is a reserved algorithm number that
should never appear in a DNSKEY record), the record indicates that
changes to the NSEC3 chains are in progress. The rest of the record
contains an NSEC3PARAM record, while the flag field tells what operation to
perform based on the flag bits:

0x01 OPTOUT

0x80 CREATE

0x40 REMOVE

0x20 NONSEC

5.9.5. DNSKEY Rollovers

As with insecure-to-secure conversions, DNSSEC keyrolls can be done
in two ways: using a dynamic DNS update, or via the auto-dnssec zone
option.

5.9.6. Dynamic DNS Update Method

To perform key rollovers via dynamic update, the K*
files for the new keys must be added so that named can find them.
The new DNSKEY RRs can then be added via dynamic update. named then causes the
zone to be signed with the new keys; when the signing is complete, the
private type records are updated so that the last octet is non-zero.

If this is for a KSK, the parent and any trust anchor
repositories of the new KSK must be informed.

The maximum TTL in the zone must expire before removing the
old DNSKEY. If it is a KSK that is being updated,
the DS RRset in the parent must also be updated and its TTL allowed to expire. This
ensures that all clients are able to verify at least one signature
when the old DNSKEY is removed.

The old DNSKEY can be removed via UPDATE, taking care to specify the
correct key. named cleans out any signatures generated by the
old key after the update completes.

5.9.7. Automatic Key Rollovers

When a new key reaches its activation date (as set by dnssec-keygen
or dnssec-settime), and if the auto-dnssec zone option is set to
maintain, named automatically carries out the key rollover.
If the key’s algorithm has not previously been used to sign the zone,
then the zone is fully signed as quickly as possible. However, if
the new key replaces an existing key of the same algorithm, the
zone is re-signed incrementally, with signatures from the old key
replaced with signatures from the new key as their signature
validity periods expire. By default, this rollover completes in 30 days,
after which it is safe to remove the old key from the DNSKEY RRset.

5.9.8. NSEC3PARAM Rollovers via UPDATE

The new NSEC3PARAM record can be added via dynamic update. When the new NSEC3
chain has been generated, the NSEC3PARAM flag field is set to zero. At
that point, the old NSEC3PARAM record can be removed. The old chain is
removed after the update request completes.

5.9.9. Converting From NSEC to NSEC3

To do this, an NSEC3PARAM record must be added. When the
conversion is complete, the NSEC chain is removed and the
NSEC3PARAM record has a zero flag field. The NSEC3 chain is
generated before the NSEC chain is destroyed.

5.9.10. Converting From NSEC3 to NSEC

To do this, use nsupdate to remove all NSEC3PARAM records with a
zero flag field. The NSEC chain is generated before the NSEC3 chain
is removed.

5.9.11. Converting From Secure to Insecure

To convert a signed zone to unsigned using dynamic DNS, delete all the
DNSKEY records from the zone apex using nsupdate. All signatures,
NSEC or NSEC3 chains, and associated NSEC3PARAM records are removed
automatically. This takes place after the update request completes.

This requires the dnssec-secure-to-insecure option to be set to
yes in named.conf.

In addition, if the auto-dnssec maintain zone statement is used, it
should be removed or changed to allow instead; otherwise it will re-sign.

5.9.12. Periodic Re-signing

In any secure zone which supports dynamic updates, named
periodically re-signs RRsets which have not been re-signed as a result of
some update action. The signature lifetimes are adjusted to
spread the re-sign load over time rather than all at once.

5.9.13. NSEC3 and OPTOUT

named only supports creating new NSEC3 chains where all the NSEC3
records in the zone have the same OPTOUT state. named supports
UPDATES to zones where the NSEC3 records in the chain have mixed OPTOUT
state. named does not support changing the OPTOUT state of an
individual NSEC3 record; if the
OPTOUT state of an individual NSEC3 needs to be changed, the entire chain must be changed.

5.10. Dynamic Trust Anchor Management

BIND is able to maintain DNSSEC trust anchors using RFC 5011 [https://tools.ietf.org/html/rfc5011.html] key
management. This feature allows named to keep track of changes to
critical DNSSEC keys without any need for the operator to make changes
to configuration files.

5.10.1. Validating Resolver

To configure a validating resolver to use RFC 5011 [https://tools.ietf.org/html/rfc5011.html] to maintain a trust
anchor, configure the trust anchor using a dnssec-keys statement and
the initial-key keyword. Information about this can be found in
trust-anchors Statement Definition and Usage.

5.10.2. Authoritative Server

To set up an authoritative zone for RFC 5011 [https://tools.ietf.org/html/rfc5011.html] trust anchor maintenance,
generate two (or more) key signing keys (KSKs) for the zone. Sign the
zone with one of them; this is the “active” KSK. All KSKs which do not
sign the zone are “stand-by” keys.

Any validating resolver which is configured to use the active KSK as an
RFC 5011-managed trust anchor takes note of the stand-by KSKs in the
zone’s DNSKEY RRset, and stores them for future reference. The resolver
rechecks the zone periodically; after 30 days, if the new key is
still there, the key is accepted by the resolver as a valid
trust anchor for the zone. Anytime after this 30-day acceptance timer
has completed, the active KSK can be revoked, and the zone can be
“rolled over” to the newly accepted key.

The easiest way to place a stand-by key in a zone is to use the “smart
signing” features of dnssec-keygen and dnssec-signzone. If a key
exists with a publication date in the past, but an activation date which is
unset or in the future, dnssec-signzone -S includes the
DNSKEY record in the zone but does not sign with it:

$ dnssec-keygen -K keys -f KSK -P now -A now+2y example.net
$ dnssec-signzone -S -K keys example.net

To revoke a key, use the command dnssec-revoke. This
adds the REVOKED bit to the key flags and regenerates the K*.key
and K*.private files.

After revoking the active key, the zone must be signed with both the
revoked KSK and the new active KSK. Smart signing takes care of this
automatically.

Once a key has been revoked and used to sign the DNSKEY RRset in which
it appears, that key is never again accepted as a valid trust
anchor by the resolver. However, validation can proceed using the new
active key, which was accepted by the resolver when it was a
stand-by key.

See RFC 5011 [https://tools.ietf.org/html/rfc5011.html] for more details on key rollover scenarios.

When a key has been revoked, its key ID changes, increasing by 128 and
wrapping around at 65535. So, for example, the key
“Kexample.com.+005+10000” becomes “Kexample.com.+005+10128”.

If two keys have IDs exactly 128 apart and one is revoked, the two
key IDs will collide, causing several problems. To prevent this,
dnssec-keygen does not generate a new key if another key
which may collide is present. This checking only occurs if the new keys are
written to the same directory that holds all other keys in use for that
zone.

Older versions of BIND 9 did not have this protection. Exercise caution
if using key revocation on keys that were generated by previous
releases, or if using keys stored in multiple directories or on multiple
machines.

It is expected that a future release of BIND 9 will address this problem
in a different way, by storing revoked keys with their original
unrevoked key IDs.

5.11. PKCS#11 (Cryptoki) Support

Public Key Cryptography Standard #11 (PKCS#11) defines a
platform-independent API for the control of hardware security modules
(HSMs) and other cryptographic support devices.

BIND 9 is known to work with three HSMs: the AEP Keyper, which has been
tested with Debian Linux, Solaris x86, and Windows Server 2003; the
Thales nShield, tested with Debian Linux; and the Sun SCA 6000
cryptographic acceleration board, tested with Solaris x86. In addition,
BIND can be used with all current versions of SoftHSM, a software-based
HSM simulator library produced by the OpenDNSSEC project.

PKCS#11 uses a “provider library”: a dynamically loadable
library which provides a low-level PKCS#11 interface to drive the HSM
hardware. The PKCS#11 provider library comes from the HSM vendor, and it
is specific to the HSM to be controlled.

There are two available mechanisms for PKCS#11 support in BIND 9:
OpenSSL-based PKCS#11 and native PKCS#11. With OpenSSL-based PKCS#11,
BIND uses a modified version of OpenSSL, which loads the
provider library and operates the HSM indirectly; any cryptographic
operations not supported by the HSM can be carried out by OpenSSL
instead. Native PKCS#11 enables BIND to bypass OpenSSL completely;
BIND loads the provider library itself, and uses the PKCS#11 API to
drive the HSM directly.

5.11.1. Prerequisites

See the documentation provided by the HSM vendor for information about
installing, initializing, testing, and troubleshooting the HSM.

5.11.2. Native PKCS#11

Native PKCS#11 mode only works with an HSM capable of carrying out
every cryptographic operation BIND 9 may need. The HSM’s provider
library must have a complete implementation of the PKCS#11 API, so that
all these functions are accessible. As of this writing, only the Thales
nShield HSM and SoftHSMv2 can be used in this fashion. For other HSMs,
including the AEP Keyper, Sun SCA 6000, and older versions of SoftHSM,
use OpenSSL-based PKCS#11. (Note: Eventually, when more HSMs become
capable of supporting native PKCS#11, it is expected that OpenSSL-based
PKCS#11 will be deprecated.)

To build BIND with native PKCS#11, configure it as follows:

$ cd bind9
$./configure --enable-native-pkcs11 \
 --with-pkcs11=provider-library-path

This causes all BIND tools, including named and the dnssec-*
and pkcs11-* tools, to use the PKCS#11 provider library specified in
provider-library-path for cryptography. (The provider library path can
be overridden using the -E argument in named and the dnssec-* tools,
or the -m argument in the pkcs11-* tools.)

5.11.2.1. Building SoftHSMv2

SoftHSMv2, the latest development version of SoftHSM, is available from
https://github.com/opendnssec/SoftHSMv2. It is a software library
developed by the OpenDNSSEC project (http://www.opendnssec.org) which
provides a PKCS#11 interface to a virtual HSM, implemented in the form
of a SQLite3 database on the local filesystem. It provides less security
than a true HSM, but it allows users to experiment with native PKCS#11
when an HSM is not available. SoftHSMv2 can be configured to use either
OpenSSL or the Botan library to perform cryptographic functions, but
when using it for native PKCS#11 in BIND, OpenSSL is required.

By default, the SoftHSMv2 configuration file is prefix/etc/softhsm2.conf
(where prefix is configured at compile time). This location can be
overridden by the SOFTHSM2_CONF environment variable. The SoftHSMv2
cryptographic store must be installed and initialized before using it
with BIND.

$ cd SoftHSMv2
$ configure --with-crypto-backend=openssl --prefix=/opt/pkcs11/usr
$ make
$ make install
$ /opt/pkcs11/usr/bin/softhsm-util --init-token 0 --slot 0 --label softhsmv2

5.11.3. OpenSSL-based PKCS#11

OpenSSL-based PKCS#11 uses engine_pkcs11 OpenSSL engine from libp11 project.

For more information, see https://gitlab.isc.org/isc-projects/bind9/-/wikis/BIND-9-PKCS11

5.11.4. PKCS#11 Tools

BIND 9 includes a minimal set of tools to operate the HSM, including
pkcs11-keygen to generate a new key pair within the HSM,
pkcs11-list to list objects currently available, pkcs11-destroy
to remove objects, and pkcs11-tokens to list available tokens.

In UNIX/Linux builds, these tools are built only if BIND 9 is configured
with the --with-pkcs11 option. (Note: If --with-pkcs11 is set to yes,
rather than to the path of the PKCS#11 provider, the tools are
built but the provider is left undefined. Use the -m option or the
PKCS11_PROVIDER environment variable to specify the path to the
provider.)

5.11.5. Using the HSM

For OpenSSL-based PKCS#11, the runtime environment must first be set up
so the OpenSSL and PKCS#11 libraries can be loaded:

$ export LD_LIBRARY_PATH=/opt/pkcs11/usr/lib:${LD_LIBRARY_PATH}

This causes named and other binaries to load the OpenSSL library
from /opt/pkcs11/usr/lib, rather than from the default location. This
step is not necessary when using native PKCS#11.

Some HSMs require other environment variables to be set. For example,
when operating an AEP Keyper, the location of
the “machine” file, which stores information about the Keyper for use by
the provider library, must be specified. If the machine file is in
/opt/Keyper/PKCS11Provider/machine, use:

$ export KEYPER_LIBRARY_PATH=/opt/Keyper/PKCS11Provider

Such environment variables must be set when running any tool that
uses the HSM, including pkcs11-keygen, pkcs11-list,
pkcs11-destroy, dnssec-keyfromlabel, dnssec-signzone,
dnssec-keygen, and named.

HSM keys can now be created and used. In this case, we will create
a 2048-bit key and give it the label “sample-ksk”:

$ pkcs11-keygen -b 2048 -l sample-ksk

To confirm that the key exists:

$ pkcs11-list
Enter PIN:
object[0]: handle 2147483658 class 3 label[8] 'sample-ksk' id[0]
object[1]: handle 2147483657 class 2 label[8] 'sample-ksk' id[0]

Before using this key to sign a zone, we must create a pair of BIND 9
key files. The dnssec-keyfromlabel utility does this. In this case, we
are using the HSM key “sample-ksk” as the key-signing key for
“example.net”:

$ dnssec-keyfromlabel -l sample-ksk -f KSK example.net

The resulting K*.key and K*.private files can now be used to sign the
zone. Unlike normal K* files, which contain both public and private key
data, these files contain only the public key data, plus an
identifier for the private key which remains stored within the HSM.
Signing with the private key takes place inside the HSM.

To generate a second key in the HSM for use as a
zone-signing key, follow the same procedure above, using a different
keylabel, a smaller key size, and omitting -f KSK from the
dnssec-keyfromlabel arguments:

$ pkcs11-keygen -b 1024 -l sample-zsk
$ dnssec-keyfromlabel -l sample-zsk example.net

Alternatively, a conventional on-disk key can be generated
using dnssec-keygen:

$ dnssec-keygen example.net

This provides less security than an HSM key, but since HSMs can be slow
or cumbersome to use for security reasons, it may be more efficient to
reserve HSM keys for use in the less frequent key-signing operation. The
zone-signing key can be rolled more frequently, if desired, to
compensate for a reduction in key security. (Note: When using native
PKCS#11, there is no speed advantage to using on-disk keys, as
cryptographic operations are done by the HSM.)

Now the zone can be signed. Please note that, if the -S option is not used for
dnssec-signzone, the contents of both
K*.key files must be added to the zone master file before signing it.

$ dnssec-signzone -S example.net
Enter PIN:
Verifying the zone using the following algorithms:
NSEC3RSASHA1.
Zone signing complete:
Algorithm: NSEC3RSASHA1: ZSKs: 1, KSKs: 1 active, 0 revoked, 0 stand-by
example.net.signed

5.11.6. Specifying the Engine on the Command Line

When using OpenSSL-based PKCS#11, the “engine” to be used by OpenSSL can
be specified in named and all of the BIND dnssec-* tools by
using the -E <engine> command line option. If BIND 9 is built with the
--with-pkcs11 option, this option defaults to “pkcs11”. Specifying the
engine is generally not necessary unless
a different OpenSSL engine is used.

To disable use of the “pkcs11” engine - for
troubleshooting purposes, or because the HSM is unavailable - set
the engine to the empty string. For example:

$ dnssec-signzone -E '' -S example.net

This causes dnssec-signzone to run as if it were compiled without
the --with-pkcs11 option.

When built with native PKCS#11 mode, the “engine” option has a different
meaning: it specifies the path to the PKCS#11 provider library. This may
be useful when testing a new provider library.

5.11.7. Running named With Automatic Zone Re-signing

For named to dynamically re-sign zones using HSM keys,
and/or to sign new records inserted via nsupdate, named must
have access to the HSM PIN. In OpenSSL-based PKCS#11, this is
accomplished by placing the PIN into the openssl.cnf file (in the above
examples, /opt/pkcs11/usr/ssl/openssl.cnf).

The location of the openssl.cnf file can be overridden by setting the
OPENSSL_CONF environment variable before running named.

Here is a sample openssl.cnf:

openssl_conf = openssl_def
[openssl_def]
engines = engine_section
[engine_section]
pkcs11 = pkcs11_section
[pkcs11_section]
PIN = <PLACE PIN HERE>

This also allows the dnssec-* tools to access the HSM without PIN
entry. (The pkcs11-* tools access the HSM directly, not via OpenSSL, so
a PIN is still required to use them.)

In native PKCS#11 mode, the PIN can be provided in a file specified as
an attribute of the key’s label. For example, if a key had the label
pkcs11:object=local-zsk;pin-source=/etc/hsmpin, then the PIN would
be read from the file /etc/hsmpin.

Warning

Placing the HSM’s PIN in a text file in this manner may reduce the
security advantage of using an HSM. Use caution
when configuring the system in this way.

5.12. Dynamically Loadable Zones (DLZ)

Dynamically Loadable Zones (DLZ) are an extension to BIND 9 that allows
zone data to be retrieved directly from an external database. There is
no required format or schema. DLZ drivers exist for several different
database backends, including PostgreSQL, MySQL, and LDAP, and can be
written for any other.

Historically, DLZ drivers had to be statically linked with the named
binary and were turned on via a configure option at compile time (for
example, configure --with-dlz-ldap). The drivers
provided in the BIND 9 tarball in contrib/dlz/drivers are still
linked this way.

In BIND 9.8 and higher, it is possible to link some DLZ modules
dynamically at runtime, via the DLZ “dlopen” driver, which acts as a
generic wrapper around a shared object implementing the DLZ API. The
“dlopen” driver is linked into named by default, so configure
options are no longer necessary when using these dynamically linkable
drivers; they are still needed for the older drivers in
contrib/dlz/drivers.

The DLZ module provides data to named in text
format, which is then converted to DNS wire format by named. This
conversion, and the lack of any internal caching, places significant
limits on the query performance of DLZ modules. Consequently, DLZ is not
recommended for use on high-volume servers. However, it can be used in a
hidden primary configuration, with secondaries retrieving zone updates via
AXFR. Note, however, that DLZ has no built-in support for DNS notify;
secondary servers are not automatically informed of changes to the zones in the
database.

5.12.1. Configuring DLZ

A DLZ database is configured with a dlz statement in named.conf:

dlz example {
database "dlopen driver.so args";
search yes;
};

This specifies a DLZ module to search when answering queries; the module
is implemented in driver.so and is loaded at runtime by the dlopen
DLZ driver. Multiple dlz statements can be specified; when answering
a query, all DLZ modules with search set to yes are queried
to see whether they contain an answer for the query name. The best
available answer is returned to the client.

The search option in the above example can be omitted, because
yes is the default value.

If search is set to no, this DLZ module is not searched
for the best match when a query is received. Instead, zones in this DLZ
must be separately specified in a zone statement. This allows users to
configure a zone normally using standard zone-option semantics, but
specify a different database backend for storage of the zone’s data.
For example, to implement NXDOMAIN redirection using a DLZ module for
backend storage of redirection rules:

dlz other {
database "dlopen driver.so args";
search no;
};

zone "." {
type redirect;
dlz other;
};

5.12.2. Sample DLZ Driver

For guidance in the implementation of DLZ modules, the directory
contrib/dlz/example contains a basic dynamically linkable DLZ
module - i.e., one which can be loaded at runtime by the “dlopen” DLZ
driver. The example sets up a single zone, whose name is passed to the
module as an argument in the dlz statement:

dlz other {
database "dlopen driver.so example.nil";
};

In the above example, the module is configured to create a zone
“example.nil”, which can answer queries and AXFR requests and accept
DDNS updates. At runtime, prior to any updates, the zone contains an
SOA, NS, and a single A record at the apex:

example.nil. 3600 IN SOA example.nil. hostmaster.example.nil. (
 123 900 600 86400 3600
)
example.nil. 3600 IN NS example.nil.
example.nil. 1800 IN A 10.53.0.1

The sample driver can retrieve information about the
querying client and alter its response on the basis of this
information. To demonstrate this feature, the example driver responds to
queries for “source-addr.``zonename``>/TXT” with the source address of
the query. Note, however, that this record will not be included in
AXFR or ANY responses. Normally, this feature is used to alter
responses in some other fashion, e.g., by providing different address
records for a particular name depending on the network from which the
query arrived.

Documentation of the DLZ module API can be found in
contrib/dlz/example/README. This directory also contains the header
file dlz_minimal.h, which defines the API and should be included by
any dynamically linkable DLZ module.

5.13. Dynamic Database (DynDB)

Dynamic Database, or DynDB, is an extension to BIND 9 which, like DLZ (see
Dynamically Loadable Zones (DLZ)), allows zone data to be retrieved from an external
database. Unlike DLZ, a DynDB module provides a full-featured BIND zone
database interface. Where DLZ translates DNS queries into real-time
database lookups, resulting in relatively poor query performance, and is
unable to handle DNSSEC-signed data due to its limited API, a DynDB
module can pre-load an in-memory database from the external data source,
providing the same performance and functionality as zones served
natively by BIND.

A DynDB module supporting LDAP has been created by Red Hat and is
available from https://pagure.io/bind-dyndb-ldap.

A sample DynDB module for testing and developer guidance is included
with the BIND source code, in the directory
bin/tests/system/dyndb/driver.

5.13.1. Configuring DynDB

A DynDB database is configured with a dyndb statement in
named.conf:

dyndb example "driver.so" {
 parameters
};

The file driver.so is a DynDB module which implements the full DNS
database API. Multiple dyndb statements can be specified, to load
different drivers or multiple instances of the same driver. Zones
provided by a DynDB module are added to the view’s zone table, and are
treated as normal authoritative zones when BIND responds to
queries. Zone configuration is handled internally by the DynDB module.

The parameters are passed as an opaque string to the DynDB module’s
initialization routine. Configuration syntax differs depending on
the driver.

5.13.2. Sample DynDB Module

For guidance in the implementation of DynDB modules, the directory
bin/tests/system/dyndb/driver contains a basic DynDB module. The
example sets up two zones, whose names are passed to the module as
arguments in the dyndb statement:

dyndb sample "sample.so" { example.nil. arpa. };

In the above example, the module is configured to create a zone,
“example.nil”, which can answer queries and AXFR requests and accept
DDNS updates. At runtime, prior to any updates, the zone contains an
SOA, NS, and a single A record at the apex:

example.nil. 86400 IN SOA example.nil. example.nil. (
 0 28800 7200 604800 86400
)
example.nil. 86400 IN NS example.nil.
example.nil. 86400 IN A 127.0.0.1

When the zone is updated dynamically, the DynDB module determines
whether the updated RR is an address (i.e., type A or AAAA); if so,
it automatically updates the corresponding PTR record in a reverse
zone. Note that updates are not stored permanently; all updates are lost when the
server is restarted.

5.14. Catalog Zones

A “catalog zone” is a special DNS zone that contains a list of other
zones to be served, along with their configuration parameters. Zones
listed in a catalog zone are called “member zones.” When a catalog zone
is loaded or transferred to a secondary server which supports this
functionality, the secondary server creates the member zones
automatically. When the catalog zone is updated (for example, to add or
delete member zones, or change their configuration parameters), those
changes are immediately put into effect. Because the catalog zone is a
normal DNS zone, these configuration changes can be propagated using the
standard AXFR/IXFR zone transfer mechanism.

Catalog zones’ format and behavior are specified as an Internet draft
for interoperability among DNS implementations. The
latest revision of the DNS catalog zones draft can be found here:
https://datatracker.ietf.org/doc/draft-toorop-dnsop-dns-catalog-zones/ .

5.14.1. Principle of Operation

Normally, if a zone is to be served by a secondary server, the
named.conf file on the server must list the zone, or the zone must
be added using rndc addzone. In environments with a large number of
secondary servers, and/or where the zones being served are changing
frequently, the overhead involved in maintaining consistent zone
configuration on all the secondary servers can be significant.

A catalog zone is a way to ease this administrative burden: it is a DNS
zone that lists member zones that should be served by secondary servers.
When a secondary server receives an update to the catalog zone, it adds,
removes, or reconfigures member zones based on the data received.

To use a catalog zone, it must first be set up as a normal zone on both the
primary and secondary servers that are configured to use it. It
must also be added to a catalog-zones list in the options or
view statement in named.conf. This is comparable to the way a
policy zone is configured as a normal zone and also listed in a
response-policy statement.

To use the catalog zone feature to serve a new member zone:

	Set up the the member zone to be served on the primary as normal. This
can be done by editing named.conf or by running
rndc addzone.

	Add an entry to the catalog zone for the new member zone. This can
be done by editing the catalog zone’s zone file and running
rndc reload, or by updating the zone using nsupdate.

The change to the catalog zone is propagated from the primary to all
secondaries using the normal AXFR/IXFR mechanism. When the secondary receives the
update to the catalog zone, it detects the entry for the new member
zone, creates an instance of that zone on the secondary server, and points
that instance to the primaries specified in the catalog zone data. The
newly created member zone is a normal secondary zone, so BIND
immediately initiates a transfer of zone contents from the primary. Once
complete, the secondary starts serving the member zone.

Removing a member zone from a secondary server requires only
deleting the member zone’s entry in the catalog zone; the change to the
catalog zone is propagated to the secondary server using the normal
AXFR/IXFR transfer mechanism. The secondary server, on processing the
update, notices that the member zone has been removed, stops
serving the zone, and removes it from its list of configured zones.
However, removing the member zone from the primary server must be done
by editing the configuration file or running
rndc delzone.

5.14.2. Configuring Catalog Zones

Catalog zones are configured with a catalog-zones statement in the
options or view section of named.conf. For example:

catalog-zones {
 zone "catalog.example"
 default-primaries { 10.53.0.1; }
 in-memory no
 zone-directory "catzones"
 min-update-interval 10;
};

This statement specifies that the zone catalog.example is a catalog
zone. This zone must be properly configured in the same view. In most
configurations, it would be a secondary zone.

The options following the zone name are not required, and may be
specified in any order.

	default-masters

	This option defines the default primaries for member
zones listed in a catalog zone, and can be overridden by options within
a catalog zone. If no such options are included, then member zones
transfer their contents from the servers listed in this option.

	in-memory

	This option, if set to yes, causes member zones to be
stored only in memory. This is functionally equivalent to configuring a
secondary zone without a file option. The default is no; member
zones’ content is stored locally in a file whose name is
automatically generated from the view name, catalog zone name, and
member zone name.

	zone-directory

	This option causes local copies of member zones’
zone files to be stored in
the specified directory, if in-memory is not set to yes. The default is to store zone files in the
server’s working directory. A non-absolute pathname in
zone-directory is assumed to be relative to the working directory.

	min-update-interval

	This option sets the minimum interval between
processing of updates to catalog zones, in seconds. If an update to a
catalog zone (for example, via IXFR) happens less than
min-update-interval seconds after the most recent update, the
changes are not carried out until this interval has elapsed. The
default is 5 seconds.

Catalog zones are defined on a per-view basis. Configuring a non-empty
catalog-zones statement in a view automatically turns on
allow-new-zones for that view. This means that rndc addzone
and rndc delzone also work in any view that supports catalog
zones.

5.14.3. Catalog Zone Format

A catalog zone is a regular DNS zone; therefore, it must have a single
SOA and at least one NS record.

A record stating the version of the catalog zone format is also
required. If the version number listed is not supported by the server,
then a catalog zone may not be used by that server.

catalog.example. IN SOA . . 2016022901 900 600 86400 1
catalog.example. IN NS nsexample.
version.catalog.example. IN TXT "1"

Note that this record must have the domain name
version.catalog-zone-name. The data
stored in a catalog zone is indicated by the domain name label
immediately before the catalog zone domain.

Catalog zone options can be set either globally for the whole catalog
zone or for a single member zone. Global options override the settings
in the configuration file, and member zone options override global
options.

Global options are set at the apex of the catalog zone, e.g.:

primaries.catalog.example. IN AAAA 2001:db8::1

BIND currently supports the following options:

	A simple primaries definition:

primaries.catalog.example. IN A 192.0.2.1

This option defines a primary server for the member zones, which can be
either an A or AAAA record. If multiple primaries are set, the order in
which they are used is random.

	A primaries with a TSIG key defined:

label.primaries.catalog.example. IN A 192.0.2.2
label.primaries.catalog.example. IN TXT "tsig_key_name"

This option defines a primary server for the member zone with a TSIG
key set. The TSIG key must be configured in the configuration file.
label can be any valid DNS label.

	allow-query and allow-transfer ACLs:

allow-query.catalog.example. IN APL 1:10.0.0.1/24
allow-transfer.catalog.example. IN APL !1:10.0.0.1/32 1:10.0.0.0/24

These options are the equivalents of allow-query and
allow-transfer in a zone declaration in the named.conf
configuration file. The ACL is processed in order; if there is no
match to any rule, the default policy is to deny access. For the
syntax of the APL RR, see RFC 3123 [https://tools.ietf.org/html/rfc3123.html].

A member zone is added by including a PTR resource record in the
zones sub-domain of the catalog zone. The record label is a
SHA-1 hash of the member zone name in wire format. The target of the
PTR record is the member zone name. For example, to add the member zone
domain.example:

5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example. IN PTR domain.example.

The hash is necessary to identify options for a specific member zone.
The member zone-specific options are defined the same way as global
options, but in the member zone subdomain:

primaries.5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example. IN A 192.0.2.2
label.primaries.5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example. IN AAAA 2001:db8::2
label.primaries.5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example. IN TXT "tsig_key"
allow-query.5960775ba382e7a4e09263fc06e7c00569b6a05c.zones.catalog.example. IN APL 1:10.0.0.0/24

Options defined for a specific zone override the
global options defined in the catalog zone. These in turn override the
global options defined in the catalog-zones statement in the
configuration file.

Note that none of the global records for an option are inherited if any
records are defined for that option for the specific zone. For example,
if the zone had a masters record of type A but not AAAA, it
would not inherit the type AAAA record from the global option.

5.15. IPv6 Support in BIND 9

BIND 9 fully supports all currently defined forms of IPv6 name-to-address
and address-to-name lookups. It also uses IPv6 addresses to
make queries when running on an IPv6-capable system.

For forward lookups, BIND 9 supports only AAAA records. RFC 3363 [https://tools.ietf.org/html/rfc3363.html]
deprecated the use of A6 records, and client-side support for A6 records
was accordingly removed from BIND 9. However, authoritative BIND 9 name
servers still load zone files containing A6 records correctly, answer
queries for A6 records, and accept zone transfer for a zone containing
A6 records.

For IPv6 reverse lookups, BIND 9 supports the traditional “nibble”
format used in the ip6.arpa domain, as well as the older, deprecated
ip6.int domain. Older versions of BIND 9 supported the “binary label”
(also known as “bitstring”) format, but support of binary labels has
been completely removed per RFC 3363 [https://tools.ietf.org/html/rfc3363.html]. Many applications in BIND 9 do not
understand the binary label format at all anymore, and return an
error if one is given. In particular, an authoritative BIND 9 name server will
not load a zone file containing binary labels.

For an overview of the format and structure of IPv6 addresses, see
IPv6 Addresses (AAAA).

5.15.1. Address Lookups Using AAAA Records

The IPv6 AAAA record is a parallel to the IPv4 A record, and, unlike the
deprecated A6 record, specifies the entire IPv6 address in a single
record. For example:

$ORIGIN example.com.
host 3600 IN AAAA 2001:db8::1

Use of IPv4-in-IPv6 mapped addresses is not recommended. If a host has
an IPv4 address, use an A record, not a AAAA, with
::ffff:192.168.42.1 as the address.

5.15.2. Address-to-Name Lookups Using Nibble Format

When looking up an address in nibble format, the address components are
simply reversed, just as in IPv4, and ip6.arpa. is appended to the
resulting name. For example, the following would provide reverse name
lookup for a host with address 2001:db8::1:

$ORIGIN 0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 14400 IN PTR (
 host.example.com.)

6. BIND 9 Security Considerations

6.1. Access Control Lists

Access Control Lists (ACLs) are address match lists that can be set up
and nicknamed for future use in allow-notify, allow-query,
allow-query-on, allow-recursion, blackhole,
allow-transfer, match-clients, etc.

ACLs give users finer control over who can access the
name server, without cluttering up configuration files with huge lists of
IP addresses.

It is a good idea to use ACLs, and to control access.
Limiting access to the server by outside parties can help prevent
spoofing and denial of service (DoS) attacks against the server.

ACLs match clients on the basis of up to three characteristics: 1) The
client’s IP address; 2) the TSIG or SIG(0) key that was used to sign the
request, if any; and 3) an address prefix encoded in an EDNS
Client-Subnet option, if any.

Here is an example of ACLs based on client addresses:

// Set up an ACL named "bogusnets" that blocks
// RFC1918 space and some reserved space, which is
// commonly used in spoofing attacks.
acl bogusnets {
 0.0.0.0/8; 192.0.2.0/24; 224.0.0.0/3;
 10.0.0.0/8; 172.16.0.0/12; 192.168.0.0/16;
};

// Set up an ACL called our-nets. Replace this with the
// real IP numbers.
acl our-nets { x.x.x.x/24; x.x.x.x/21; };
options {
 ...
 ...
 allow-query { our-nets; };
 allow-recursion { our-nets; };
 ...
 blackhole { bogusnets; };
 ...
};

zone "example.com" {
 type primary;
 file "m/example.com";
 allow-query { any; };
};

This allows authoritative queries for example.com from any address,
but recursive queries only from the networks specified in our-nets,
and no queries at all from the networks specified in bogusnets.

In addition to network addresses and prefixes, which are matched against
the source address of the DNS request, ACLs may include key
elements, which specify the name of a TSIG or SIG(0) key.

When BIND 9 is built with GeoIP support, ACLs can also be used for
geographic access restrictions. This is done by specifying an ACL
element of the form: geoip db database field value.

The field parameter indicates which field to search for a match. Available fields
are country, region, city, continent, postal (postal code),
metro (metro code), area (area code), tz (timezone), isp,
asnum, and domain.

value is the value to search for within the database. A string may be quoted
if it contains spaces or other special characters. An asnum search for
autonomous system number can be specified using the string “ASNNNN” or the
integer NNNN. If a country search is specified with a string that is two characters
long, it must be a standard ISO-3166-1 two-letter country code; otherwise,
it is interpreted as the full name of the country. Similarly, if
region is the search term and the string is two characters long, it is treated as a
standard two-letter state or province abbreviation; otherwise, it is treated as the
full name of the state or province.

The database field indicates which GeoIP database to search for a match. In
most cases this is unnecessary, because most search fields can only be found in
a single database. However, searches for continent or country can be
answered from either the city or country databases, so for these search
types, specifying a database forces the query to be answered from that
database and no other. If a database is not specified, these queries
are first answered from the city database if it is installed, and then from the country
database if it is installed. Valid database names are country,
city, asnum, isp, and domain.

Some example GeoIP ACLs:

geoip country US;
geoip country JP;
geoip db country country Canada;
geoip region WA;
geoip city "San Francisco";
geoip region Oklahoma;
geoip postal 95062;
geoip tz "America/Los_Angeles";
geoip org "Internet Systems Consortium";

ACLs use a “first-match” logic rather than “best-match”; if an address
prefix matches an ACL element, then that ACL is considered to have
matched even if a later element would have matched more specifically.
For example, the ACL { 10/8; !10.0.0.1; } would actually match a
query from 10.0.0.1, because the first element indicates that the query
should be accepted, and the second element is ignored.

When using “nested” ACLs (that is, ACLs included or referenced within
other ACLs), a negative match of a nested ACL tells the containing ACL to
continue looking for matches. This enables complex ACLs to be
constructed, in which multiple client characteristics can be checked at
the same time. For example, to construct an ACL which allows a query
only when it originates from a particular network and only when it is
signed with a particular key, use:

allow-query { !{ !10/8; any; }; key example; };

Within the nested ACL, any address that is not in the 10/8 network
prefix is rejected, which terminates processing of the ACL.
Any address that is in the 10/8 network prefix is accepted, but
this causes a negative match of the nested ACL, so the containing ACL
continues processing. The query is accepted if it is signed by
the key example, and rejected otherwise. The ACL, then, only
matches when both conditions are true.

6.2. Chroot and Setuid

On Unix servers, it is possible to run BIND in a chrooted environment
(using the chroot() function) by specifying the -t option for
named. This can help improve system security by placing BIND in a
“sandbox,” which limits the damage done if a server is compromised.

Another useful feature in the Unix version of BIND is the ability to run
the daemon as an unprivileged user (-u user). We suggest running
as an unprivileged user when using the chroot feature.

Here is an example command line to load BIND in a chroot sandbox,
/var/named, and to run named setuid to user 202:

/usr/local/sbin/named -u 202 -t /var/named

6.2.1. The chroot Environment

For a chroot environment to work properly in a particular
directory (for example, /var/named), the
environment must include everything BIND needs to run. From BIND’s
point of view, /var/named is the root of the filesystem;
the values of options like directory and pid-file
must be adjusted to account for this.

Unlike with earlier versions of BIND,
named does not typically need to be compiled statically, nor do shared libraries need to be installed under the new
root. However, depending on the operating system, it may be necessary to set
up locations such as /dev/zero, /dev/random, /dev/log, and
/etc/localtime.

6.2.2. Using the setuid Function

Prior to running the named daemon, use the touch utility (to
change file access and modification times) or the chown utility (to
set the user id and/or group id) on files where BIND should
write.

Note

If the named daemon is running as an unprivileged user, it
cannot bind to new restricted ports if the server is
reloaded.

6.3. Dynamic Update Security

Access to the dynamic update facility should be strictly limited. In
earlier versions of BIND, the only way to do this was based on the IP
address of the host requesting the update, by listing an IP address or
network prefix in the allow-update zone option. This method is
insecure, since the source address of the update UDP packet is easily
forged. Also note that if the IP addresses allowed by the
allow-update option include the address of a secondary server which
performs forwarding of dynamic updates, the primary can be trivially
attacked by sending the update to the secondary, which forwards it to
the primary with its own source IP address - causing the primary to approve
it without question.

For these reasons, we strongly recommend that updates be
cryptographically authenticated by means of transaction signatures
(TSIG). That is, the allow-update option should list only TSIG key
names, not IP addresses or network prefixes. Alternatively, the
update-policy option can be used.

Some sites choose to keep all dynamically updated DNS data in a
subdomain and delegate that subdomain to a separate zone. This way, the
top-level zone containing critical data, such as the IP addresses of
public web and mail servers, need not allow dynamic updates at all.

7. Troubleshooting

7.1. Common Problems

7.1.1. It’s Not Working; How Can I Figure Out What’s Wrong?

The best solution to installation and configuration issues is to
take preventive measures by setting up logging files beforehand. The
log files provide hints and information that can be used to
identify anything that went wrong and fix the problem.

7.1.2. EDNS Compliance Issues

EDNS (Extended DNS) is a standard that was first specified in 1999. It
is required for DNSSEC validation, DNS COOKIE options, and other
features. There are broken and outdated DNS servers and firewalls still
in use which misbehave when queried with EDNS; for example, they may
drop EDNS queries rather than replying with FORMERR. BIND and other
recursive name servers have traditionally employed workarounds in this
situation, retrying queries in different ways and eventually falling
back to plain DNS queries without EDNS.

Such workarounds cause unnecessary resolution delays, increase code
complexity, and prevent deployment of new DNS features. In February
2019, all major DNS software vendors removed these
workarounds; see https://dnsflagday.net/2019 for further details. This change
was implemented in BIND as of release 9.14.0.

As a result, some domains may be non-resolvable without manual
intervention. In these cases, resolution can be restored by adding
server clauses for the offending servers, or by specifying edns no or
send-cookie no, depending on the specific noncompliance.

To determine which server clause to use, run the following commands
to send queries to the authoritative servers for the broken domain:

dig soa <zone> @<server> +dnssec
dig soa <zone> @<server> +dnssec +nocookie
dig soa <zone> @<server> +noedns

If the first command fails but the second succeeds, the server most
likely needs send-cookie no. If the first two fail but the third
succeeds, then the server needs EDNS to be fully disabled with
edns no.

Please contact the administrators of noncompliant domains and encourage
them to upgrade their broken DNS servers.

7.2. Incrementing and Changing the Serial Number

Zone serial numbers are just numbers — they are not date-related. However, many
people set them to a number that represents a date, usually of the
form YYYYMMDDRR. Occasionally they make a mistake and set the serial number to a
date in the future, then try to correct it by setting it to the
current date. This causes problems because serial numbers are used to
indicate that a zone has been updated. If the serial number on the secondary
server is lower than the serial number on the primary, the secondary server
attempts to update its copy of the zone.

Setting the serial number to a lower number on the primary server than the one
on the secondary server means that the secondary will not perform updates to its
copy of the zone.

The solution to this is to add 2147483647 (2^31-1) to the number, reload
the zone and make sure all secondaries have updated to the new zone serial
number, then reset it to the desired number and reload the
zone again.

7.3. Where Can I Get Help?

The BIND-users mailing list, at https://lists.isc.org/mailman/listinfo/bind-users, is an excellent resource for
peer user support. In addition, ISC maintains a Knowledgebase of helpful articles
at https://kb.isc.org.

Internet Systems Consortium (ISC) offers annual support agreements
for BIND 9, ISC DHCP, and Kea DHCP.
All paid support contracts include advance security notifications; some levels include
service level agreements (SLAs), premium software features, and increased priority on bug fixes
and feature requests.

Please contact info@isc.org or visit
https://www.isc.org/contact/ for more information.

Release Notes

Contents

	Release Notes

	Introduction

	Supported Platforms

	Download

	Notes for BIND 9.17.3

	New Features

	Feature Changes

	Bug Fixes

	Notes for BIND 9.17.2

	Security Fixes

	Known Issues

	New Features

	Feature Changes

	Bug Fixes

	Notes for BIND 9.17.1

	Security Fixes

	Known Issues

	New Features

	Feature Changes

	Bug Fixes

	Notes for BIND 9.17.0

	Known Issues

	New Features

	Feature Changes

	Bug Fixes

	License

	End of Life

	Thank You

Introduction

BIND 9.17 is an unstable development release of BIND. This document
summarizes new features and functional changes that have been introduced
on this branch. With each development release leading up to the stable
BIND 9.18 release, this document will be updated with additional
features added and bugs fixed. Please see the CHANGES file for a more
detailed list of changes and bug fixes.

Supported Platforms

To build on Unix-like systems, BIND requires support for POSIX.1c
threads (IEEE Std 1003.1c-1995), the Advanced Sockets API for IPv6
(RFC 3542 [https://tools.ietf.org/html/rfc3542.html]), and standard atomic operations provided by the C
compiler.

The libuv asynchronous I/O library and the OpenSSL cryptography library
must be available for the target platform. A PKCS#11 provider can be
used instead of OpenSSL for Public Key cryptography (i.e., DNSSEC
signing and validation), but OpenSSL is still required for general
cryptography operations such as hashing and random number generation.

More information can be found in the PLATFORMS.md file that is
included in the source distribution of BIND 9. If your compiler and
system libraries provide the above features, BIND 9 should compile and
run. If that is not the case, the BIND development team will generally
accept patches that add support for systems that are still supported by
their respective vendors.

Download

The latest versions of BIND 9 software can always be found at
https://www.isc.org/download/. There you will find additional
information about each release, source code, and pre-compiled versions
for Microsoft Windows operating systems.

Notes for BIND 9.17.3

New Features

	New rndc command rndc dnssec -status shows the current DNSSEC
policy and keys in use, the key states, and rollover status.
[GL #1612]

	Added support in the network manager for initiating outgoing TCP
connections. [GL #1958]

Feature Changes

	Disable and disallow static linking of BIND 9 binaries and libraries
as BIND 9 modules require dlopen() support and static linking also
prevents using security features like read-only relocations (RELRO) or
address space layout randomization (ASLR) which are important for
programs that interact with the network and process arbitrary user
input. [GL #1933]

	As part of an ongoing effort to use RFC 8499 terminology,
primaries can now be used as a synonym for masters in
named.conf. Similarly, notify primary-only can now be used as
a synonym for notify master-only. The output of rndc
zonestatus now uses primary and secondary terminology.
[GL #1948]

Bug Fixes

	A race condition could occur if a TCP socket connection was closed
while named was waiting for a recursive response. The attempt to
send a response over the closing connection triggered an assertion
failure in the function isc__nm_tcpdns_send(). [GL #1937]

	A race condition could occur when named attempted to use a UDP
interface that was shutting down. This triggered an assertion failure
in uv__udp_finish_close(). [GL #1938]

	Fix assertion failure when server was under load and root zone had not
yet been loaded. [GL #1862]

	named could crash when cleaning dead nodes in lib/dns/rbtdb.c
that were being reused. [GL #1968]

	named crashed on shutdown when a new rndc connection was
received during shutdown. This has been fixed. [GL #1747]

	The DS RRset returned by dns_keynode_dsset() was used in a
non-thread-safe manner. This could result in an INSIST being
triggered. [GL #1926]

	The primary and secondary keywords, when used as parameters
for check-names, were not processed correctly and were being
ignored. [GL #1949]

	rndc dnstap -roll <value> did not limit the number of saved files
to <value>. [GL !3728]

	The validator could fail to accept a properly signed RRset if an
unsupported algorithm appeared earlier in the DNSKEY RRset than a
supported algorithm. It could also stop if it detected a malformed
public key. [GL #1689]

	The blackhole ACL was inadvertently disabled for client queries.
Blocked IP addresses were not used for upstream queries but queries
from those addresses could still be answered. [GL #1936]

Notes for BIND 9.17.2

Security Fixes

	To prevent exhaustion of server resources by a maliciously configured
domain, the number of recursive queries that can be triggered by a
request before aborting recursion has been further limited. Root and
top-level domain servers are no longer exempt from the
max-recursion-queries limit. Fetches for missing name server
address records are limited to 4 for any domain. This issue was
disclosed in CVE-2020-8616. [GL #1388]

	Replaying a TSIG BADTIME response as a request could trigger an
assertion failure. This was disclosed in CVE-2020-8617. [GL #1703]

	It was possible to trigger an assertion when attempting to fill an
oversized TCP buffer. This was disclosed in CVE-2020-8618. [GL #1850]

	It was possible to trigger an INSIST failure when a zone with an
interior wildcard label was queried in a certain pattern. This was
disclosed in CVE-2020-8619. [GL #1111] [GL #1718]

Known Issues

	In this release, the build system has been significantly changed (see
below) and there are several unresolved issues to be aware of when
using a development release. Please refer to GitLab issue #4 [https://gitlab.isc.org/isc-projects/bind9/-/issues/4] for a
list of not-yet-resolved issues that will be fixed in future
releases. [GL #4]

	BIND crashes on startup when linked against libuv 1.36. This issue
is related to recvmmsg() support in libuv, which was first
included in libuv 1.35. The problem was addressed in libuv 1.37, but
the relevant libuv code change requires a special flag to be set
during library initialization in order for recvmmsg() support to
be enabled. This BIND release sets that special flag when required,
so recvmmsg() support is now enabled when BIND is compiled
against either libuv 1.35 or libuv 1.37+; libuv 1.36 is still not
usable with BIND. [GL #1761] [GL #1797]

New Features

	The BIND 9 build system has been changed to use a typical
autoconf+automake+libtool stack. This should not make any difference
for people building BIND 9 from release tarballs, but when building
BIND 9 from the Git repository, autoreconf -fi needs to be run
first. Extra attention is also needed when using non-standard
./configure options. [GL #4]

	Documentation was converted from DocBook to reStructuredText. The
BIND 9 ARM is now generated using Sphinx and published on Read the
Docs [https://bind9.readthedocs.io/]. Release notes are no longer available as a separate document
accompanying a release. [GL #83]

	named and named-checkzone now reject master zones that have a
DS RRset at the zone apex. Attempts to add DS records at the zone
apex via UPDATE will be logged but otherwise ignored. DS records
belong in the parent zone, not at the zone apex. [GL #1798]

	Per-type record count limits can now be specified in
update-policy statements, to limit the number of records of a
particular type that can be added to a domain name via dynamic
update. [GL #1657]

	dig and other tools can now print the Extended DNS Error (EDE)
option when it appears in a request or a response. [GL #1835]

	dig +qid=<num> allows the user to specify a particular query ID
for testing purposes. [GL #1851]

	A new logging category, rpz-passthru, was added, which allows RPZ
passthru actions to be logged into a separate channel. [GL #54]

	Zone timers are now exported via statistics channel. For primary
zones, only the load time is exported. For secondary zones, exported
timers also include expire and refresh times. Contributed by Paul
Frieden, Verizon Media. [GL #1232]

Feature Changes

	The default value of max-stale-ttl has changed from 1 week to 12
hours. This option controls how long named retains expired RRsets
in cache as a potential mitigation mechanism, should there be a
problem with one or more domains. Note that cache content retention
is independent of whether stale answers are used in response to
client queries (stale-answer-enable yes|no and rndc serve-stale
on|off). Serving of stale answers when the authoritative servers
are not responding must be explicitly enabled, whereas the retention
of expired cache content takes place automatically on all versions of
BIND 9 that have this feature available. [GL #1877]

Warning

This change may be significant for administrators who expect that
stale cache content will be automatically retained for up to 1
week. Add option max-stale-ttl 1w; to named.conf to keep
the previous behavior of named.

	BIND 9 no longer sets receive/send buffer sizes for UDP sockets,
relying on system defaults instead. [GL #1713]

	The default rwlock implementation has been changed back to the native
BIND 9 rwlock implementation. [GL #1753]

	BIND 9 binaries which are neither daemons nor administrative programs
were moved to $bindir. Only ddns-confgen, named,
rndc, rndc-confgen, and tsig-confgen were left in
$sbindir. [GL #1724]

	listen-on-v6 { any; } creates a separate socket for each
interface. Previously, just one socket was created on systems
conforming to RFC 3493 [https://tools.ietf.org/html/rfc3493.html] and RFC 3542 [https://tools.ietf.org/html/rfc3542.html]. This change was introduced
in BIND 9.16.0, but it was accidentally omitted from documentation.
[GL #1782]

	The native PKCS#11 EdDSA implementation has been updated to PKCS#11
v3.0 and thus made operational again. Contributed by Aaron Thompson.
[GL !3326]

	The OpenSSL ECDSA implementation has been updated to support PKCS#11
via OpenSSL engine (see engine_pkcs11 from libp11 project). [GL
#1534]

	The OpenSSL EdDSA implementation has been updated to support PKCS#11
via OpenSSL engine. Please note that an EdDSA-capable OpenSSL engine
is required and thus this code is only a proof-of-concept for the
time being. Contributed by Aaron Thompson. [GL #1763]

	Message IDs in inbound AXFR transfers are now checked for
consistency. Log messages are emitted for streams with inconsistent
message IDs. [GL #1674]

	The question section is now checked when processing AXFR, IXFR,
and SOA replies while transferring a zone in. [GL #1683]

Bug Fixes

	When fully updating the NSEC3 chain for a large zone via IXFR, a
temporary loss of performance could be experienced on the secondary
server when answering queries for nonexistent data that required
DNSSEC proof of non-existence (in other words, queries that required
the server to find and to return NSEC3 data). The unnecessary
processing step that was causing this delay has now been removed.
[GL #1834]

	named could crash with an assertion failure if the name of a
database node was looked up while the database was being modified.
[GL #1857]

	When running on a system with support for Linux capabilities,
named drops root privileges very soon after system startup. This
was causing a spurious log message, unable to set effective uid to
0: Operation not permitted, which has now been silenced. [GL #1042]
[GL #1090]

	A possible deadlock in lib/isc/unix/socket.c was fixed.
[GL #1859]

	Previously, named did not destroy some mutexes and conditional
variables in netmgr code, which caused a memory leak on FreeBSD. This
has been fixed. [GL #1893]

	A data race in lib/dns/resolver.c:log_formerr() that could lead
to an assertion failure was fixed. [GL #1808]

	Previously, provide-ixfr no; failed to return up-to-date
responses when the serial number was greater than or equal to the
current serial number. [GL #1714]

	A bug in dnstap initialization could prevent some dnstap data from
being logged, especially on recursive resolvers. [GL #1795]

	A bug in dnssec-policy keymgr was fixed, where the check for the
existence of a given key’s successor would incorrectly return
true if any other key in the keyring had a successor. [GL #1845]

	With dnssec-policy, when creating a successor key, the “goal” state
of the current active key (the predecessor) was not changed and thus
never removed from the zone. [GL #1846]

	When named-checkconf -z was run, it would sometimes incorrectly
set its exit code. It reflected the status of the last view found; if
zone-loading errors were found in earlier configured views but not in
the last one, the exit code indicated success. Thanks to Graham
Clinch. [GL #1807]

	named-checkconf -p could include spurious text in
server-addresses statements due to an uninitialized DSCP value.
This has been fixed. [GL #1812]

	When built without LMDB support, named failed to restart after a
zone with a double quote (“) in its name was added with rndc
addzone. Thanks to Alberto Fernández. [GL #1695]

	The ARM has been updated to indicate that the TSIG session key is
generated when named starts, regardless of whether it is needed.
[GL #1842]

Notes for BIND 9.17.1

Security Fixes

	DNS rebinding protection was ineffective when BIND 9 is configured as
a forwarding DNS server. Found and responsibly reported by Tobias
Klein. [GL #1574]

Known Issues

	We have received reports that in some circumstances, receipt of an
IXFR can cause the processing of queries to slow significantly. Some
of these were related to RPZ processing, which has been fixed in this
release (see below). Others appear to occur where there are
NSEC3-related changes (such as an operator changing the NSEC3 salt
used in the hash calculation). These are being investigated. [GL
#1685]

New Features

	A new option, nsdname-wait-recurse, has been added to the
response-policy clause in the configuration file. When set to
no, RPZ NSDNAME rules are only applied if the authoritative
nameservers for the query name have been looked up and are present in
the cache. If this information is not present, the RPZ NSDNAME rules
are ignored, but the information is looked up in the background and
applied to subsequent queries. The default is yes, meaning that
RPZ NSDNAME rules should always be applied, even if the information
needs to be looked up first. [GL #1138]

Feature Changes

	The previous DNSSEC sign statistics used lots of memory. The number
of keys to track is reduced to four per zone, which should be enough
for 99% of all signed zones. [GL #1179]

Bug Fixes

	When an RPZ policy zone was updated via zone transfer and a large
number of records was deleted, named could become nonresponsive
for a short period while deleted names were removed from the RPZ
summary database. This database cleanup is now done incrementally
over a longer period of time, reducing such delays. [GL #1447]

	When trying to migrate an already-signed zone from auto-dnssec
maintain to one based on dnssec-policy, the existing keys were
immediately deleted and replaced with new ones. As the key rollover
timing constraints were not being followed, it was possible that some
clients would not have been able to validate responses until all old
DNSSEC information had timed out from caches. BIND now looks at the
time metadata of the existing keys and incorporates it into its
DNSSEC policy operation. [GL #1706]

Notes for BIND 9.17.0

Known Issues

	UDP network ports used for listening can no longer simultaneously be
used for sending traffic. An example configuration which triggers
this issue would be one which uses the same address:port pair for
listen-on(-v6) statements as for notify-source(-v6) or
transfer-source(-v6). While this issue affects all operating
systems, it only triggers log messages (e.g. “unable to create
dispatch for reserved port”) on some of them. There are currently no
plans to make such a combination of settings work again.

New Features

	When a secondary server receives a large incremental zone transfer
(IXFR), it can have a negative impact on query performance while the
incremental changes are applied to the zone. To address this,
named can now limit the size of IXFR responses it sends in
response to zone transfer requests. If an IXFR response would be
larger than an AXFR of the entire zone, it will send an AXFR response
instead.

This behavior is controlled by the max-ixfr-ratio option - a
percentage value representing the ratio of IXFR size to the size of a
full zone transfer. The default is 100%. [GL #1515]

	A new RPZ option nsdname-wait-recurse controls whether
RPZ-NSDNAME rules should always be applied even if the names of
authoritative name servers for the query name need to be looked up
recurively first. The default is yes. Setting it to no speeds
up initial responses by skipping RPZ-NSDNAME rules when name server
domain names are not yet in the cache. The names will be looked up in
the background and the rule will be applied for subsequent queries.
[GL #1138]

Feature Changes

	The system-provided POSIX Threads read-write lock implementation is
now used by default instead of the native BIND 9 implementation.
Please be aware that glibc versions 2.26 through 2.29 had a bug [https://sourceware.org/bugzilla/show_bug.cgi?id=23844] that
could cause BIND 9 to deadlock. A fix was released in glibc 2.30, and
most current Linux distributions have patched or updated glibc, with
the notable exception of Ubuntu 18.04 (Bionic) which is a work in
progress. If you are running on an affected operating system, compile
BIND 9 with --disable-pthread-rwlock until a fixed version of
glibc is available. [GL !3125]

	The rndc nta -dump and rndc secroots commands now both
include validate-except entries when listing negative trust
anchors. These are indicated by the keyword permanent in place of
the expiry date. [GL #1532]

Bug Fixes

	Fixed re-signing issues with inline zones which resulted in records
being re-signed late or not at all.

License

BIND 9 is open source software licensed under the terms of the Mozilla
Public License, version 2.0 (see the LICENSE file for the full
text).

The license requires that if you make changes to BIND and distribute
them outside your organization, those changes must be published under
the same license. It does not require that you publish or disclose
anything other than the changes you have made to our software. This
requirement does not affect anyone who is using BIND, with or without
modifications, without redistributing it, nor anyone redistributing BIND
without changes.

Those wishing to discuss license compliance may contact ISC at
https://www.isc.org/contact/.

End of Life

BIND 9.17 is an unstable development branch. When its development is
complete, it will be renamed to BIND 9.18, which will be a stable
branch. The end-of-life date for BIND 9.18 has not yet been determined.
For those needing long-term stability, the current Extended Support
Version (ESV) is BIND 9.11, which will be supported until at least
December 2021. See https://kb.isc.org/docs/aa-00896 for details of
ISC’s software support policy.

Thank You

Thank you to everyone who assisted us in making this release possible.

A Brief History of the DNS and BIND

Although the Domain Name System “officially” began in
1984 with the publication of RFC 920 [https://tools.ietf.org/html/rfc920.html], the core of the new system was
described in 1983 in RFC 882 [https://tools.ietf.org/html/rfc882.html] and RFC 883 [https://tools.ietf.org/html/rfc883.html]. From 1984 to 1987, the ARPAnet
(the precursor to today’s Internet) became a testbed of experimentation
for developing the new naming/addressing scheme in a rapidly expanding,
operational network environment. New RFCs were written and published in
1987 that modified the original documents to incorporate improvements
based on the working model. RFC 1034 [https://tools.ietf.org/html/rfc1034.html], “Domain Names-Concepts and
Facilities,” and RFC 1035 [https://tools.ietf.org/html/rfc1035.html], “Domain Names-Implementation and
Specification,” were published and became the standards upon which all
DNS implementations are built.

The first working domain name server, called “Jeeves,” was written in
1983-84 by Paul Mockapetris for operation on DEC Tops-20 machines
located at the University of Southern California’s Information Sciences
Institute (USC-ISI) and SRI International’s Network Information Center
(SRI-NIC). A DNS server for Unix machines, the Berkeley Internet Name
Domain (BIND) package, was written soon after by a group of graduate
students at the University of California at Berkeley under a grant from
the US Defense Advanced Research Projects Administration (DARPA).

Versions of BIND through 4.8.3 were maintained by the Computer Systems
Research Group (CSRG) at UC Berkeley. Douglas Terry, Mark Painter, David
Riggle, and Songnian Zhou made up the initial BIND project team. After
that, additional work on the software package was done by Ralph
Campbell. Kevin Dunlap, a Digital Equipment Corporation employee on loan
to the CSRG, worked on BIND for 2 years, from 1985 to 1987. Many other
people also contributed to BIND development during that time: Doug
Kingston, Craig Partridge, Smoot Carl-Mitchell, Mike Muuss, Jim Bloom,
and Mike Schwartz. BIND maintenance was subsequently handled by Mike
Karels and Øivind Kure.

BIND versions 4.9 and 4.9.1 were released by Digital Equipment
Corporation (which became Compaq Computer Corporation and eventually merged
with Hewlett-Packard). Paul Vixie, then a DEC
employee, became BIND’s primary caretaker. He was assisted by Phil
Almquist, Robert Elz, Alan Barrett, Paul Albitz, Bryan Beecher, Andrew
Partan, Andy Cherenson, Tom Limoncelli, Berthold Paffrath, Fuat Baran,
Anant Kumar, Art Harkin, Win Treese, Don Lewis, Christophe Wolfhugel,
and others.

In 1994, BIND version 4.9.2 was sponsored by Vixie Enterprises. Paul
Vixie became BIND’s principal architect/programmer.

BIND versions from 4.9.3 onward have been developed and maintained by
Internet Systems Consortium and its predecessor, the Internet
Software Consortium, with support provided by ISC’s sponsors.

As co-architects/programmers, Bob Halley and Paul Vixie released the
first production-ready version of BIND version 8 in May 1997.

BIND version 9 was released in September 2000 and is a major rewrite of
nearly all aspects of the underlying BIND architecture.

BIND versions 4 and 8 are officially deprecated. No additional
development is done on BIND version 4 or BIND version 8.

BIND development work is made possible today by the sponsorship of
corporations who purchase professional support services from ISC
(https://www.isc.org/contact/) and/or donate to our mission, and by the
tireless efforts of numerous individuals.

General DNS Reference Information

IPv6 Addresses (AAAA)

IPv6 addresses are 128-bit identifiers, for interfaces and sets of
interfaces, which were introduced in the DNS to facilitate scalable
Internet routing. There are three types of addresses: Unicast, an
identifier for a single interface; Anycast, an identifier for a set of
interfaces; and Multicast, an identifier for a set of interfaces. Here
we describe the global Unicast address scheme. For more information, see
RFC 3587 [https://tools.ietf.org/html/rfc3587.html], “IPv6 Global Unicast Address Format.”

IPv6 unicast addresses consist of a global routing prefix, a subnet
identifier, and an interface identifier.

The global routing prefix is provided by the upstream provider or ISP,
and roughly corresponds to the IPv4 network section of the address
range. The subnet identifier is for local subnetting, much like
subnetting an IPv4 /16 network into /24 subnets. The interface
identifier is the address of an individual interface on a given network;
in IPv6, addresses belong to interfaces rather than to machines.

The subnetting capability of IPv6 is much more flexible than that of
IPv4; subnetting can be carried out on bit boundaries, in much the same
way as Classless InterDomain Routing (CIDR), and the DNS PTR
representation (“nibble” format) makes setting up reverse zones easier.

The interface identifier must be unique on the local link, and is
usually generated automatically by the IPv6 implementation, although it
is usually possible to override the default setting if necessary. A
typical IPv6 address might look like:
2001:db8:201:9:a00:20ff:fe81:2b32.

IPv6 address specifications often contain long strings of zeros, so the
architects have included a shorthand for specifying them. The double
colon (::) indicates the longest possible string of zeros that can
fit, and can be used only once in an address.

Bibliography (and Suggested Reading)

Request for Comments (RFCs)

BIND 9 strives for strict compliance with IETF standards. To the best
of our knowledge, BIND 9 complies with the following RFCs, with
the caveats and exceptions listed in the numbered notes below. Many
of these RFCs were written by current or former ISC staff members.
The list is non-exhaustive.

Specification documents for the Internet protocol suite, including the
DNS, are published as part of the Request for Comments (RFCs) series of
technical notes. The standards themselves are defined by the Internet
Engineering Task Force (IETF) and the Internet Engineering Steering
Group (IESG). RFCs can be viewed online at: https://datatracker.ietf.org/doc/ .

Some of these RFCs, though DNS-related, are not concerned with implementing
software.

Internet Standards

RFC 1034 [https://tools.ietf.org/html/rfc1034.html] - P. Mockapetris. Domain Names — Concepts and Facilities. November
1987.

RFC 1035 [https://tools.ietf.org/html/rfc1035.html] - P. Mockapetris. Domain Names — Implementation and Specification.
November 1987. [1] [2]

RFC 1123 [https://tools.ietf.org/html/rfc1123.html] - R. Braden. Requirements for Internet Hosts - Application and
Support. October 1989.

RFC 3596 [https://tools.ietf.org/html/rfc3596.html] - S. Thomson, C. Huitema, V. Ksinant, and M. Souissi. DNS Extensions to
Support IP Version 6. October 2003.

RFC 5011 [https://tools.ietf.org/html/rfc5011.html] - M. StJohns. Automated Updates of DNS Security (DNSSEC) Trust Anchors.

RFC 6891 [https://tools.ietf.org/html/rfc6891.html] - J. Damas, M. Graff, and P. Vixie. Extension Mechanisms for DNS
(EDNS(0)). April 2013.

Proposed Standards

RFC 1982 [https://tools.ietf.org/html/rfc1982.html] - R. Elz and R. Bush. Serial Number Arithmetic. August 1996.

RFC 1995 [https://tools.ietf.org/html/rfc1995.html] - M. Ohta. Incremental Zone Transfer in DNS. August 1996.

RFC 1996 [https://tools.ietf.org/html/rfc1996.html] - P. Vixie. A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY).
August 1996.

RFC 2136 [https://tools.ietf.org/html/rfc2136.html] - P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. Dynamic Updates in the
Domain Name System (DNS UPDATE). April 1997.

RFC 2163 [https://tools.ietf.org/html/rfc2163.html] - A. Allocchio. Using the Internet DNS to Distribute MIXER
Conformant Global Address Mapping (MCGAM). January 1998.

RFC 2181 [https://tools.ietf.org/html/rfc2181.html] - R. Elz and R. Bush. Clarifications to the DNS Specification. July 1997.

RFC 2308 [https://tools.ietf.org/html/rfc2308.html] - M. Andrews. Negative Caching of DNS Queries (DNS NCACHE). March 1998.

RFC 2539 [https://tools.ietf.org/html/rfc2539.html] - D. Eastlake, 3rd. Storage of Diffie-Hellman Keys in the Domain Name
System (DNS). March 1999.

RFC 2782 [https://tools.ietf.org/html/rfc2782.html] - A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for Specifying the
Location of Services (DNS SRV). February 2000.

RFC 2845 [https://tools.ietf.org/html/rfc2845.html] - P. Vixie, O. Gudmundsson, D. Eastlake, 3rd, and B. Wellington. Secret Key
Transaction Authentication for DNS (TSIG). May 2000.

RFC 2930 [https://tools.ietf.org/html/rfc2930.html] - D. Eastlake, 3rd. Secret Key Establishment for DNS (TKEY RR).
September 2000.

RFC 2931 [https://tools.ietf.org/html/rfc2931.html] - D. Eastlake, 3rd. DNS Request and Transaction Signatures (SIG(0)s).
September 2000. [3]

RFC 3007 [https://tools.ietf.org/html/rfc3007.html] - B. Wellington. Secure Domain Name System (DNS) Dynamic Update.
November 2000.

RFC 3110 [https://tools.ietf.org/html/rfc3110.html] - D. Eastlake, 3rd. RSA/SHA-1 SIGs and RSA KEYs in the Domain Name
System (DNS). May 2001.

RFC 3225 [https://tools.ietf.org/html/rfc3225.html] - D. Conrad. Indicating Resolver Support of DNSSEC. December 2001.

RFC 3226 [https://tools.ietf.org/html/rfc3226.html] - O. Gudmundsson. DNSSEC and IPv6 A6 Aware Server/Resolver
Message Size Requirements. December 2001.

RFC 3492 [https://tools.ietf.org/html/rfc3492.html] - A. Costello. Punycode: A Bootstring Encoding of Unicode for
Internationalized Domain Names in Applications (IDNA). March 2003.

RFC 3597 [https://tools.ietf.org/html/rfc3597.html] - A. Gustafsson. Handling of Unknown DNS Resource Record (RR) Types.
September 2003.

RFC 3645 [https://tools.ietf.org/html/rfc3645.html] - S. Kwan, P. Garg, J. Gilroy, L. Esibov, J. Westhead, and R. Hall. Generic
Security Service Algorithm for Secret Key Transaction Authentication for
DNS (GSS-TSIG). October 2003.

RFC 4025 [https://tools.ietf.org/html/rfc4025.html] - M. Richardson. A Method for Storing IPsec Keying Material in
DNS. March 2005.

RFC 4033 [https://tools.ietf.org/html/rfc4033.html] - R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security
Introduction and Requirements. March 2005. [4]

RFC 4034 [https://tools.ietf.org/html/rfc4034.html] - R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Resource Records for
the DNS Security Extensions. March 2005.

RFC 4035 [https://tools.ietf.org/html/rfc4035.html] - R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Protocol
Modifications for the DNS Security Extensions. March 2005.

RFC 4255 [https://tools.ietf.org/html/rfc4255.html] - J. Schlyter and W. Griffin. Using DNS to Securely Publish Secure
Shell (SSH) Key Fingerprints. January 2006.

RFC 4343 [https://tools.ietf.org/html/rfc4343.html] - D. Eastlake, 3rd. Domain Name System (DNS) Case Insensitivity
Clarification. January 2006.

RFC 4398 [https://tools.ietf.org/html/rfc4398.html] - S. Josefsson. Storing Certificates in the Domain Name System (DNS). March 2006.

RFC 4470 [https://tools.ietf.org/html/rfc4470.html] - S. Weiler and J. Ihren. Minimally Covering NSEC Records and
DNSSEC On-line Signing. April 2006. [5]

RFC 4509 [https://tools.ietf.org/html/rfc4509.html] - W. Hardaker. Use of SHA-256 in DNSSEC Delegation Signer
(DS) Resource Records (RRs). May 2006.

RFC 4592 [https://tools.ietf.org/html/rfc4592.html] - E. Lewis. The Role of Wildcards in the Domain Name System. July 2006.

RFC 4635 [https://tools.ietf.org/html/rfc4635.html] - D. Eastlake, 3rd. HMAC SHA (Hashed Message Authentication
Code, Secure Hash Algorithm) TSIG Algorithm Identifiers. August 2006.

RFC 4701 [https://tools.ietf.org/html/rfc4701.html] - M. Stapp, T. Lemon, and A. Gustafsson. A DNS Resource Record
(RR) for Encoding Dynamic Host Configuration Protocol (DHCP) Information (DHCID
RR). October 2006.

RFC 4955 [https://tools.ietf.org/html/rfc4955.html] - D. Blacka. DNS Security (DNSSEC) Experiments. July 2007. [6]

RFC 5001 [https://tools.ietf.org/html/rfc5001.html] - R. Austein. DNS Name Server Identifier (NSID) Option. August 2007.

RFC 5155 [https://tools.ietf.org/html/rfc5155.html] - B. Laurie, G. Sisson, R. Arends, and D. Blacka. DNS Security
(DNSSEC) Hashed Authenticated Denial of Existence. March 2008.

RFC 5452 [https://tools.ietf.org/html/rfc5452.html] - A. Hubert and R. van Mook. Measures for Making DNS More
Resilient Against Forged Answers. January 2009. [7]

RFC 5702 [https://tools.ietf.org/html/rfc5702.html] - J. Jansen. Use of SHA-2 Algorithms with RSA in DNSKEY and
RRSIG Resource Records for DNSSEC. October 2009.

RFC 5936 [https://tools.ietf.org/html/rfc5936.html] - E. Lewis and A. Hoenes, Ed. DNS Zone Transfer Protocol (AXFR).
June 2010.

RFC 5952 [https://tools.ietf.org/html/rfc5952.html] - S. Kawamura and M. Kawashima. A Recommendation for IPv6 Address
Text Representation. August 2010.

RFC 6052 [https://tools.ietf.org/html/rfc6052.html] - C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, and X. Li. IPv6
Addressing of IPv4/IPv6 Translators. October 2010.

RFC 6147 [https://tools.ietf.org/html/rfc6147.html] - M. Bagnulo, A. Sullivan, P. Matthews, and I. van Beijnum.
DNS64: DNS Extensions for Network Address Translation from IPv6 Clients to
IPv4 Servers. April 2011. [8]

RFC 6594 [https://tools.ietf.org/html/rfc6594.html] - O. Sury. Use of the SHA-256 Algorithm with RSA, Digital
Signature Algorithm (DSA), and Elliptic Curve DSA (ECDSA) in SSHFP Resource
Records. April 2012.

RFC 6604 [https://tools.ietf.org/html/rfc6604.html] - D. Eastlake, 3rd. xNAME RCODE and Status Bits Clarification.
April 2012.

RFC 6605 [https://tools.ietf.org/html/rfc6605.html] - P. Hoffman and W. C. A. Wijngaards. Elliptic Curve Digital
Signature Algorithm (DSA) for DNSSEC. April 2012. [9]

RFC 6672 [https://tools.ietf.org/html/rfc6672.html] - S. Rose and W. Wijngaards. DNAME Redirection in the DNS.
June 2012.

RFC 6698 [https://tools.ietf.org/html/rfc6698.html] - P. Hoffman and J. Schlyter. The DNS-Based Authentication of
Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA.
August 2012.

RFC 6725 [https://tools.ietf.org/html/rfc6725.html] - S. Rose. DNS Security (DNSSEC) DNSKEY Algorithm IANA Registry
Updates. August 2012. [10]

RFC 6840 [https://tools.ietf.org/html/rfc6840.html] - S. Weiler, Ed., and D. Blacka, Ed. Clarifications and
Implementation Notes for DNS Security (DNSSEC). February 2013. [11]

RFC 7216 [https://tools.ietf.org/html/rfc7216.html] - M. Thomson and R. Bellis. Location Information Server (LIS)
Discovery Using IP Addresses and Reverse DNS. April 2014.

RFC 7344 [https://tools.ietf.org/html/rfc7344.html] - W. Kumari, O. Gudmundsson, and G. Barwood. Automating DNSSEC
Delegation Trust Maintenance. September 2014. [12]

RFC 7477 [https://tools.ietf.org/html/rfc7477.html] - W. Hardaker. Child-to-Parent Synchronization in DNS. March
2015.

RFC 7766 [https://tools.ietf.org/html/rfc7766.html] - J. Dickinson, S. Dickinson, R. Bellis, A. Mankin, and D.
Wessels. DNS Transport over TCP - Implementation Requirements. March 2016.

RFC 7828 [https://tools.ietf.org/html/rfc7828.html] - P. Wouters, J. Abley, S. Dickinson, and R. Bellis.
The edns-tcp-keepalive EDNS0 Option. April 2016.

RFC 7830 [https://tools.ietf.org/html/rfc7830.html] - A. Mayrhofer. The EDNS(0) Padding Option. May 2016. [13]

RFC 8080 [https://tools.ietf.org/html/rfc8080.html] - O. Sury and R. Edmonds. Edwards-Curve Digital Security Algorithm
(EdDSA) for DNSSEC. February 2017.

RFC 8482 [https://tools.ietf.org/html/rfc8482.html] - J. Abley, O. Gudmundsson, M. Majkowski, and E. Hunt. Providing
Minimal-Sized Responses to DNS Queries That Have QTYPE=ANY. January 2019.

RFC 8490 [https://tools.ietf.org/html/rfc8490.html] - R. Bellis, S. Cheshire, J. Dickinson, S. Dickinson, T. Lemon,
and T. Pusateri. DNS Stateful Operations. March 2019.

RFC 8624 [https://tools.ietf.org/html/rfc8624.html] - P. Wouters and O. Sury. Algorithm Implementation Requirements
and Usage Guidance for DNSSEC. June 2019.

RFC 8749 [https://tools.ietf.org/html/rfc8749.html] - W. Mekking and D. Mahoney. Moving DNSSEC Lookaside Validation
(DLV) to Historic Status. March 2020.

Informational RFCs

RFC 1535 [https://tools.ietf.org/html/rfc1535.html] - E. Gavron. A Security Problem and Proposed Correction With Widely
Deployed DNS Software. October 1993.

RFC 1536 [https://tools.ietf.org/html/rfc1536.html] - A. Kumar, J. Postel, C. Neuman, P. Danzig, and S. Miller. Common DNS
Implementation Errors and Suggested Fixes. October 1993.

RFC 1591 [https://tools.ietf.org/html/rfc1591.html] - J. Postel. Domain Name System Structure and Delegation. March 1994.

RFC 1706 [https://tools.ietf.org/html/rfc1706.html] - B. Manning and R. Colella. DNS NSAP Resource Records. October 1994.

RFC 1713 [https://tools.ietf.org/html/rfc1713.html] - A. Romao. Tools for DNS Debugging. November 1994.

RFC 1794 [https://tools.ietf.org/html/rfc1794.html] - T. Brisco. DNS Support for Load Balancing. April 1995.

RFC 1912 [https://tools.ietf.org/html/rfc1912.html] - D. Barr. Common DNS Operational and Configuration Errors. February
1996.

RFC 2230 [https://tools.ietf.org/html/rfc2230.html] - R. Atkinson. Key Exchange Delegation Record for the DNS. November
1997.

RFC 2352 [https://tools.ietf.org/html/rfc2352.html] - O. Vaughan. A Convention for Using Legal Names as Domain Names. May
1998.

RFC 2825 [https://tools.ietf.org/html/rfc2825.html] - IAB and L. Daigle. A Tangled Web: Issues of I18N, Domain Names, and
the Other Internet Protocols. May 2000.

RFC 2826 [https://tools.ietf.org/html/rfc2826.html] - Internet Architecture Board. IAB Technical Comment on the Unique
DNS Root. May 2000.

RFC 3071 [https://tools.ietf.org/html/rfc3071.html] - J. Klensin. Reflections on the DNS, RFC 1591, and Categories of
Domains. February 2001.

RFC 3258 [https://tools.ietf.org/html/rfc3258.html] - T. Hardie. Distributing Authoritative Name Servers via Shared
Unicast Addresses. April 2002.

RFC 3363 [https://tools.ietf.org/html/rfc3363.html] - R. Bush, A. Durand, B. Fink, O. Gudmundsson, and T. Hain.
Representing Internet Protocol Version 6 (IPv6) Addresses in the Domain Name
System (DNS). August 2002. [14]

RFC 3493 [https://tools.ietf.org/html/rfc3493.html] - R. Gilligan, S. Thomson, J. Bound, J. McCann, and W. Stevens.
Basic Socket Interface Extensions for IPv6. March 2003.

RFC 3496 [https://tools.ietf.org/html/rfc3496.html] - A. G. Malis and T. Hsiao. Protocol Extension for Support of
Asynchronous Transfer Mode (ATM) Service Class-aware Multiprotocol Label
Switching (MPLS) Traffic Engineering. March 2003.

RFC 3833 [https://tools.ietf.org/html/rfc3833.html] - D. Atkins and R. Austein. Threat Analysis of the Domain Name System
(DNS). August 2004.

RFC 4074 [https://tools.ietf.org/html/rfc4074.html] - Y. Morishita and T. Jinmei. Common Misbehavior Against DNS Queries for
IPv6 Addresses. June 2005.

RFC 4892 [https://tools.ietf.org/html/rfc4892.html] - S. Woolf and D. Conrad. Requirements for a Mechanism
Identifying a Name Server Instance. June 2007.

RFC 6781 [https://tools.ietf.org/html/rfc6781.html] - O. Kolkman, W. Mekking, and R. Gieben. DNSSEC Operational
Practices, Version 2. December 2012.

RFC 7043 [https://tools.ietf.org/html/rfc7043.html] - J. Abley. Resource Records for EUI-48 and EUI-64 Addresses
in the DNS. October 2013.

RFC 7129 [https://tools.ietf.org/html/rfc7129.html] - R. Gieben and W. Mekking. Authenticated Denial of Existence
in the DNS. February 2014.

RFC 7553 [https://tools.ietf.org/html/rfc7553.html] - P. Faltstrom and O. Kolkman. The Uniform Resource Identifier
(URI) DNS Resource Record. June 2015.

RFC 7583 [https://tools.ietf.org/html/rfc7583.html] - S. Morris, J. Ihren, J. Dickinson, and W. Mekking. DNSSEC Key
Rollover Timing Considerations. October 2015.

Experimental RFCs

RFC 1183 [https://tools.ietf.org/html/rfc1183.html] - C. F. Everhart, L. A. Mamakos, R. Ullmann, P. Mockapetris. New DNS RR
Definitions. October 1990.

RFC 1464 [https://tools.ietf.org/html/rfc1464.html] - R. Rosenbaum. Using the Domain Name System to Store Arbitrary
String Attributes. May 1993.

RFC 1712 [https://tools.ietf.org/html/rfc1712.html] - C. Farrell, M. Schulze, S. Pleitner, and D. Baldoni. DNS Encoding of
Geographical Location. November 1994.

RFC 1876 [https://tools.ietf.org/html/rfc1876.html] - C. Davis, P. Vixie, T. Goodwin, and I. Dickinson. A Means for Expressing
Location Information in the Domain Name System. January 1996.

RFC 2345 [https://tools.ietf.org/html/rfc2345.html] - J. Klensin, T. Wolf, and G. Oglesby. Domain Names and Company Name
Retrieval. May 1998.

RFC 2540 [https://tools.ietf.org/html/rfc2540.html] - D. Eastlake, 3rd. Detached Domain Name System (DNS) Information.
March 1999.

RFC 3123 [https://tools.ietf.org/html/rfc3123.html] - P. Koch. A DNS RR Type for Lists of Address Prefixes (APL RR). June
2001.

RFC 6742 [https://tools.ietf.org/html/rfc6742.html] - RJ Atkinson, SN Bhatti, U. St. Andrews, and S. Rose. DNS
Resource Records for the Identifier-Locator Network Protocol (ILNP).
November 2012.

RFC 7314 [https://tools.ietf.org/html/rfc7314.html] - M. Andrews. Extension Mechanisms for DNS (EDNS) EXPIRE Option.
July 2014.

RFC 7929 [https://tools.ietf.org/html/rfc7929.html] - P. Wouters. DNS-Based Authentication of Named Entities (DANE)
Bindings for OpenPGP. August 2016.

Best Current Practice RFCs

RFC 2219 [https://tools.ietf.org/html/rfc2219.html] - M. Hamilton and R. Wright. Use of DNS Aliases for Network Services.
October 1997.

RFC 2317 [https://tools.ietf.org/html/rfc2317.html] - H. Eidnes, G. de Groot, and P. Vixie. Classless IN-ADDR.ARPA Delegation.
March 1998.

RFC 2606 [https://tools.ietf.org/html/rfc2606.html] - D. Eastlake, 3rd and A. Panitz. Reserved Top Level DNS Names. June
1999. [15]

RFC 3901 [https://tools.ietf.org/html/rfc3901.html] - A. Durand and J. Ihren. DNS IPv6 Transport Operational Guidelines.
September 2004.

RFC 5625 [https://tools.ietf.org/html/rfc5625.html] - R. Bellis. DNS Proxy Implementation Guidelines. August 2009.

RFC 6303 [https://tools.ietf.org/html/rfc6303.html] - M. Andrews. Locally Served DNS Zones. July 2011.

RFC 7793 [https://tools.ietf.org/html/rfc7793.html] - M. Andrews. Adding 100.64.0.0/10 Prefixes to the IPv4
Locally-Served DNS Zones Registry. May 2016.

Historic RFCs

RFC 2874 [https://tools.ietf.org/html/rfc2874.html] - M. Crawford and C. Huitema. DNS Extensions to Support IPv6 Address
Aggregation and Renumbering. July 2000. [4]

RFC 4431 [https://tools.ietf.org/html/rfc4431.html] - M. Andrews and S. Weiler. The DNSSEC Lookaside Validation
(DLV) DNS Resource Record. February 2006.

RFCs of Type “Unknown”

RFC 1033 [https://tools.ietf.org/html/rfc1033.html] - M. Lottor. Domain Administrators Operations Guide. November 1987.

RFC 1101 [https://tools.ietf.org/html/rfc1101.html] - P. Mockapetris. DNS Encoding of Network Names and Other Types.
April 1989.

Obsoleted and Unimplemented Experimental RFCs

RFC 974 [https://tools.ietf.org/html/rfc974.html] - C. Partridge. Mail Routing and the Domain System. January 1986.

RFC 1521 [https://tools.ietf.org/html/rfc1521.html] - N. Borenstein and N. Freed. MIME (Multipurpose Internet Mail
Extensions) Part One: Mechanisms for Specifying and Describing the Format of
Internet Message Bodies. September 1993 [16]

RFC 1537 [https://tools.ietf.org/html/rfc1537.html] - P. Beertema. Common DNS Data File Configuration Errors. October
1993.

RFC 1750 [https://tools.ietf.org/html/rfc1750.html] - D. Eastlake, 3rd, S. Crocker, and J. Schiller. Randomness
Recommendations for Security. December 1994.

RFC 2010 [https://tools.ietf.org/html/rfc2010.html] - B. Manning and P. Vixie. Operational Criteria for Root Name Servers.
October 1996.

RFC 2052 [https://tools.ietf.org/html/rfc2052.html] - A. Gulbrandsen and P. Vixie. A DNS RR for Specifying the Location of
Services. October 1996.

RFC 2065 [https://tools.ietf.org/html/rfc2065.html] - D. Eastlake, 3rd and C. Kaufman. Domain Name System Security Extensions.
January 1997.

RFC 2137 [https://tools.ietf.org/html/rfc2137.html] - D. Eastlake, 3rd. Secure Domain Name System Dynamic Update. April
1997.

RFC 2168 [https://tools.ietf.org/html/rfc2168.html] - R. Daniel and M. Mealling. Resolution of Uniform Resource Identifiers
Using the Domain Name System. June 1997.

RFC 2240 [https://tools.ietf.org/html/rfc2240.html] - O. Vaughan. A Legal Basis for Domain Name Allocation. November 1997.

RFC 2535 [https://tools.ietf.org/html/rfc2535.html] - D. Eastlake, 3rd. Domain Name System Security Extensions.
March 1999. [17] [18]

RFC 2537 [https://tools.ietf.org/html/rfc2537.html] - D. Eastlake, 3rd. RSA/MD5 KEYs and SIGs in the Domain Name System
(DNS). March 1999.

RFC 2538 [https://tools.ietf.org/html/rfc2538.html] - D. Eastlake, 3rd and O. Gudmundsson. Storing Certificates in the Domain
Name System (DNS). March 1999.

RFC 2671 [https://tools.ietf.org/html/rfc2671.html] - P. Vixie. Extension Mechanisms for DNS (EDNS0). August 1999.

RFC 2672 [https://tools.ietf.org/html/rfc2672.html] - M. Crawford. Non-Terminal DNS Name Redirection. August 1999.

RFC 2673 [https://tools.ietf.org/html/rfc2673.html] - M. Crawford. Binary Labels in the Domain Name System. August 1999.

RFC 2915 [https://tools.ietf.org/html/rfc2915.html] - M. Mealling and R. Daniel. The Naming Authority Pointer (NAPTR) DNS
Resource Record. September 2000.

RFC 2929 [https://tools.ietf.org/html/rfc2929.html] - D. Eastlake, 3rd, E. Brunner-Williams, and B. Manning. Domain Name System
(DNS) IANA Considerations. September 2000.

RFC 3008 [https://tools.ietf.org/html/rfc3008.html] - B. Wellington. Domain Name System Security (DNSSEC) Signing
Authority. November 2000.

RFC 3090 [https://tools.ietf.org/html/rfc3090.html] - E. Lewis. DNS Security Extension Clarification on Zone Status.
March 2001.

RFC 3152 [https://tools.ietf.org/html/rfc3152.html] - R. Bush. Delegation of IP6.ARPA. August 2001.

RFC 3445 [https://tools.ietf.org/html/rfc3445.html] - D. Massey and S. Rose. Limiting the Scope of the KEY Resource Record
(RR). December 2002.

RFC 3490 [https://tools.ietf.org/html/rfc3490.html] - P. Faltstrom, P. Hoffman, and A. Costello. Internationalizing Domain Names
in Applications (IDNA). March 2003. [19]

RFC 3491 [https://tools.ietf.org/html/rfc3491.html] - P. Hoffman and M. Blanchet. Nameprep: A Stringprep Profile for
Internationalized Domain Names (IDN). March 2003. [19]

RFC 3655 [https://tools.ietf.org/html/rfc3655.html] - B. Wellington and O. Gudmundsson. Redefinition of DNS Authenticated
Data (AD) Bit. November 2003.

RFC 3658 [https://tools.ietf.org/html/rfc3658.html] - O. Gudmundsson. Delegation Signer (DS) Resource Record (RR).
December 2003.

RFC 3755 [https://tools.ietf.org/html/rfc3755.html] - S. Weiler. Legacy Resolver Compatibility for Delegation Signer
(DS). May 2004.

RFC 3757 [https://tools.ietf.org/html/rfc3757.html] - O. Kolkman, J. Schlyter, and E. Lewis. Domain Name System KEY (DNSKEY)
Resource Record (RR) Secure Entry Point (SEP) Flag. May 2004.

RFC 3845 [https://tools.ietf.org/html/rfc3845.html] - J. Schlyter. DNS Security (DNSSEC) NextSECure (NSEC) RDATA Format.
August 2004.

RFC 4294 [https://tools.ietf.org/html/rfc4294.html] - J. Loughney, Ed. IPv6 Node Requirements. [20]

RFC 4408 [https://tools.ietf.org/html/rfc4408.html] - M. Wong and W. Schlitt. Sender Policy Framework (SPF) for
Authorizing Use of Domains in E-Mail, Version 1. April 2006.

RFC 5966 [https://tools.ietf.org/html/rfc5966.html] - R. Bellis. DNS Transport Over TCP - Implementation
Requirements. August 2010.

RFC 6844 [https://tools.ietf.org/html/rfc6844.html] - P. Hallam-Baker and R. Stradling. DNS Certification Authority
Authorization (CAA) Resource Record. January 2013.

RFC 6944 [https://tools.ietf.org/html/rfc6944.html] - S. Rose. Applicability Statement: DNS Security (DNSSEC) DNSKEY
Algorithm Implementation Status. April 2013.

RFCs No Longer Supported in BIND 9

RFC 2536 [https://tools.ietf.org/html/rfc2536.html] - D. Eastlake, 3rd. DSA KEYs and SIGs in the Domain Name System
(DNS). March 1999.

Notes

[1] Queries to zones that have failed to load return SERVFAIL rather
than a non-authoritative response. This is considered a feature.

[2] CLASS ANY queries are not supported. This is considered a
feature.

[3] When receiving a query signed with a SIG(0), the server is
only able to verify the signature if it has the key in its local
authoritative data; it cannot do recursion or validation to
retrieve unknown keys.

[4] Compliance is with loading and serving of A6 records only. A6 records were moved
to the experimental category by RFC 3363 [https://tools.ietf.org/html/rfc3363.html].

[5] Minimally covering NSEC records are accepted but not generated.

[6] BIND 9 interoperates with correctly designed experiments.

[7] named only uses ports to extend the ID space; addresses are not
used.

[8] Section 5.5 does not match reality. named uses the presence
of DO=1 to detect if validation may be occurring. CD has no bearing
on whether validation occurs.

[9] Compliance is conditional on the OpenSSL library being linked against
a supporting ECDSA.

[10] RSAMD5 support has been removed. See RFC 6944 [https://tools.ietf.org/html/rfc6944.html].

[11] Section 5.9 - Always set CD=1 on queries. This is not done, as
it prevents DNSSEC from working correctly through another recursive server.

When talking to a recursive server, the best algorithm is to send
CD=0 and then send CD=1 iff SERVFAIL is returned, in case the recursive
server has a bad clock and/or bad trust anchor. Alternatively, one
can send CD=1 then CD=0 on validation failure, in case the recursive
server is under attack or there is stale/bogus authoritative data.

[12] Updating of parent zones is not yet implemented.

[13] named does not currently encrypt DNS requests, so the PAD option
is accepted but not returned in responses.

[14] Section 4 is ignored.

[15] This does not apply to DNS server implementations.

[16] Only the Base 64 encoding specification is supported.

[17] Wildcard records are not supported in DNSSEC secure zones.

[18] Servers authoritative for secure zones being resolved by BIND
9 must support EDNS0 (RFC2671), and must return all relevant SIGs
and NXTs in responses, rather than relying on the resolving server
to perform separate queries for missing SIGs and NXTs.

[19] BIND 9 requires --with-idn to enable entry of IDN labels within dig,
host, and nslookup at compile time. ACE labels are supported
everywhere with or without --with-idn.

[20] Section 5.1 - DNAME records are fully supported.

Internet Drafts

Internet Drafts (IDs) are rough-draft working documents of the Internet
Engineering Task Force (IETF). They are, in essence, RFCs in the preliminary
stages of development. Implementors are cautioned not to regard IDs as
archival, and they should not be quoted or cited in any formal documents
unless accompanied by the disclaimer that they are “works in progress.”
IDs have a lifespan of six months, after which they are deleted unless
updated by their authors.

Other Documents About BIND

Paul Albitz and Cricket Liu. DNS and BIND. Copyright 1998 Sebastopol, CA: O’Reilly and
Associates.

Manual Pages

arpaname - translate IP addresses to the corresponding ARPA names

Synopsis

arpaname {ipaddress …}

Description

arpaname translates IP addresses (IPv4 and IPv6) to the
corresponding IN-ADDR.ARPA or IP6.ARPA names.

See Also

BIND 9 Administrator Reference Manual.

ddns-confgen - ddns key generation tool

Synopsis

tsig-keygen [-a algorithm] [-h] [-r randomfile] [-s name]

ddns-confgen [-a algorithm] [-h] [-k keyname] [-q] [-r randomfile] [-s name] [-z zone]

Description

tsig-keygen and ddns-confgen are invocation methods for a
utility that generates keys for use in TSIG signing. The resulting keys
can be used, for example, to secure dynamic DNS updates to a zone or for
the rndc command channel.

When run as tsig-keygen, a domain name can be specified on the
command line to be used as the name of the generated key. If no
name is specified, the default is tsig-key.

When run as ddns-confgen, the generated key is accompanied by
configuration text and instructions that can be used with nsupdate
and named when setting up dynamic DNS, including an example
update-policy statement. (This usage is similar to the rndc-confgen
command for setting up command-channel security.)

Note that named itself can configure a local DDNS key for use with
nsupdate -l; it does this when a zone is configured with
update-policy local;. ddns-confgen is only needed when a more
elaborate configuration is required: for instance, if nsupdate is to
be used from a remote system.

Options

	-a algorithm

	This option specifies the algorithm to use for the TSIG key. Available choices
are: hmac-md5, hmac-sha1, hmac-sha224, hmac-sha256, hmac-sha384, and
hmac-sha512. The default is hmac-sha256. Options are
case-insensitive, and the “hmac-” prefix may be omitted.

	-h

	This option prints a short summary of options and arguments.

	-k keyname

	This option specifies the key name of the DDNS authentication key. The default is
ddns-key when neither the -s nor -z option is specified;
otherwise, the default is ddns-key as a separate label followed
by the argument of the option, e.g., ddns-key.example.com. The
key name must have the format of a valid domain name, consisting of
letters, digits, hyphens, and periods.

	-q (ddns-confgen only)

	This option enables quiet mode, which prints only the key, with no
explanatory text or usage examples. This is essentially identical to
tsig-keygen.

	-s name (ddns-confgen only)

	This option generates a configuration example to allow
dynamic updates of a single hostname. The example named.conf text
shows how to set an update policy for the specified name using the
“name” nametype. The default key name is ddns-key.name. Note that the
“self” nametype cannot be used, since the name to be updated may
differ from the key name. This option cannot be used with the -z
option.

	-z zone (ddns-confgen only)

	This option generates a configuration example to allow
dynamic updates of a zone. The example named.conf text shows how
to set an update policy for the specified zone using the “zonesub”
nametype, allowing updates to all subdomain names within that zone.
This option cannot be used with the -s option.

See Also

nsupdate(1), named.conf(5), named(8), BIND 9 Administrator Reference Manual.

delv - DNS lookup and validation utility

Synopsis

delv [@server] [[-4] | [-6]] [-a anchor-file] [-b address] [-c class] [-d level] [-i] [-m] [-p port#] [-q name] [-t type] [-x addr] [name] [type] [class] [queryopt…]

delv [-h]

delv [-v]

delv [queryopt…] [query…]

Description

delv is a tool for sending DNS queries and validating the results,
using the same internal resolver and validator logic as named.

delv sends to a specified name server all queries needed to
fetch and validate the requested data; this includes the original
requested query, subsequent queries to follow CNAME or DNAME chains,
queries for DNSKEY, and DS records to establish a chain of trust for
DNSSEC validation. It does not perform iterative resolution, but
simulates the behavior of a name server configured for DNSSEC validating
and forwarding.

By default, responses are validated using the built-in DNSSEC trust anchor
for the root zone (“.”). Records returned by delv are either fully
validated or were not signed. If validation fails, an explanation of the
failure is included in the output; the validation process can be traced
in detail. Because delv does not rely on an external server to carry
out validation, it can be used to check the validity of DNS responses in
environments where local name servers may not be trustworthy.

Unless it is told to query a specific name server, delv tries
each of the servers listed in /etc/resolv.conf. If no usable server
addresses are found, delv sends queries to the localhost
addresses (127.0.0.1 for IPv4, ::1 for IPv6).

When no command-line arguments or options are given, delv
performs an NS query for “.” (the root zone).

Simple Usage

A typical invocation of delv looks like:

delv @server name type

where:

	server

	is the name or IP address of the name server to query. This can be an
IPv4 address in dotted-decimal notation or an IPv6 address in
colon-delimited notation. When the supplied server argument is a
hostname, delv resolves that name before querying that name
server (note, however, that this initial lookup is not validated by
DNSSEC).

If no server argument is provided, delv consults
/etc/resolv.conf; if an address is found there, it queries the
name server at that address. If either of the -4 or -6
options is in use, then only addresses for the corresponding
transport are tried. If no usable addresses are found, delv
sends queries to the localhost addresses (127.0.0.1 for IPv4, ::1
for IPv6).

	name

	is the domain name to be looked up.

	type

	indicates what type of query is required - ANY, A, MX, etc.
type can be any valid query type. If no type argument is
supplied, delv performs a lookup for an A record.

Options

	-a anchor-file

	This option specifies a file from which to read DNSSEC trust anchors. The default
is /etc/bind.keys, which is included with BIND 9 and contains one
or more trust anchors for the root zone (“.”).

Keys that do not match the root zone name are ignored. An alternate
key name can be specified using the +root=NAME options.

Note: When reading the trust anchor file, delv treats trust-anchors,
initial-key, and static-key identically. That is, for a managed key,
it is the initial key that is trusted; RFC 5011 [https://tools.ietf.org/html/rfc5011.html] key management is not
supported. delv does not consult the managed-keys database maintained by
named, which means that if either of the keys in /etc/bind.keys is
revoked and rolled over, /etc/bind.keys must be updated to
use DNSSEC validation in delv.

	-b address

	This option sets the source IP address of the query to address. This must be
a valid address on one of the host’s network interfaces, or 0.0.0.0,
or ::. An optional source port may be specified by appending
#<port>

	-c class

	This option sets the query class for the requested data. Currently, only class
“IN” is supported in delv and any other value is ignored.

	-d level

	This option sets the systemwide debug level to level. The allowed range is
from 0 to 99. The default is 0 (no debugging). Debugging traces from
delv become more verbose as the debug level increases. See the
+mtrace, +rtrace, and +vtrace options below for
additional debugging details.

	-h

	This option displays the delv help usage output and exits.

	-i

	This option sets insecure mode, which disables internal DNSSEC validation. (Note,
however, that this does not set the CD bit on upstream queries. If the
server being queried is performing DNSSEC validation, then it does
not return invalid data; this can cause delv to time out. When it
is necessary to examine invalid data to debug a DNSSEC problem, use
dig +cd.)

	-m

	This option enables memory usage debugging.

	-p port#

	This option specifies a destination port to use for queries, instead of the
standard DNS port number 53. This option is used with a name
server that has been configured to listen for queries on a
non-standard port number.

	-q name

	This option sets the query name to name. While the query name can be
specified without using the -q option, it is sometimes necessary to
disambiguate names from types or classes (for example, when looking
up the name “ns”, which could be misinterpreted as the type NS, or
“ch”, which could be misinterpreted as class CH).

	-t type

	This option sets the query type to type, which can be any valid query type
supported in BIND 9 except for zone transfer types AXFR and IXFR. As
with -q, this is useful to distinguish query-name types or classes
when they are ambiguous. It is sometimes necessary to disambiguate
names from types.

The default query type is “A”, unless the -x option is supplied
to indicate a reverse lookup, in which case it is “PTR”.

	-v

	This option prints the delv version and exits.

	-x addr

	This option performs a reverse lookup, mapping an address to a name. addr
is an IPv4 address in dotted-decimal notation, or a colon-delimited
IPv6 address. When -x is used, there is no need to provide the
name or type arguments; delv automatically performs a
lookup for a name like 11.12.13.10.in-addr.arpa and sets the
query type to PTR. IPv6 addresses are looked up using nibble format
under the IP6.ARPA domain.

	-4

	This option forces delv to only use IPv4.

	-6

	This option forces delv to only use IPv6.

Query Options

delv provides a number of query options which affect the way results
are displayed, and in some cases the way lookups are performed.

Each query option is identified by a keyword preceded by a plus sign
(+). Some keywords set or reset an option. These may be preceded by
the string no to negate the meaning of that keyword. Other keywords
assign values to options like the timeout interval. They have the form
+keyword=value. The query options are:

	+[no]cdflag

	This option controls whether to set the CD (checking disabled) bit in queries
sent by delv. This may be useful when troubleshooting DNSSEC
problems from behind a validating resolver. A validating resolver
blocks invalid responses, making it difficult to retrieve them
for analysis. Setting the CD flag on queries causes the resolver
to return invalid responses, which delv can then validate
internally and report the errors in detail.

	+[no]class

	This option controls whether to display the CLASS when printing a record. The
default is to display the CLASS.

	+[no]ttl

	This option controls whether to display the TTL when printing a record. The
default is to display the TTL.

	+[no]rtrace

	This option toggles resolver fetch logging. This reports the name and type of each
query sent by delv in the process of carrying out the resolution
and validation process, including the original query
and all subsequent queries to follow CNAMEs and to establish a chain
of trust for DNSSEC validation.

This is equivalent to setting the debug level to 1 in the “resolver”
logging category. Setting the systemwide debug level to 1 using the
-d option produces the same output, but affects other
logging categories as well.

	+[no]mtrace

	This option toggles message logging. This produces a detailed dump of the
responses received by delv in the process of carrying out the
resolution and validation process.

This is equivalent to setting the debug level to 10 for the “packets”
module of the “resolver” logging category. Setting the systemwide
debug level to 10 using the -d option produces the same
output, but affects other logging categories as well.

	+[no]vtrace

	This option toggles validation logging. This shows the internal process of the
validator as it determines whether an answer is validly signed,
unsigned, or invalid.

This is equivalent to setting the debug level to 3 for the
“validator” module of the “dnssec” logging category. Setting the
systemwide debug level to 3 using the -d option produces the
same output, but affects other logging categories as well.

	+[no]short

	This option toggles between verbose and terse answers. The default is to print the answer in a
verbose form.

	+[no]comments

	This option toggles the display of comment lines in the output. The default is to
print comments.

	+[no]rrcomments

	This option toggles the display of per-record comments in the output (for example,
human-readable key information about DNSKEY records). The default is
to print per-record comments.

	+[no]crypto

	This option toggles the display of cryptographic fields in DNSSEC records. The
contents of these fields are unnecessary to debug most DNSSEC
validation failures and removing them makes it easier to see the
common failures. The default is to display the fields. When omitted,
they are replaced by the string [omitted] or, in the DNSKEY case, the
key ID is displayed as the replacement, e.g. [key id = value].

	+[no]trust

	This option controls whether to display the trust level when printing a record.
The default is to display the trust level.

	+[no]split[=W]

	This option splits long hex- or base64-formatted fields in resource records into
chunks of W characters (where W is rounded up to the nearest
multiple of 4). +nosplit or +split=0 causes fields not to be
split at all. The default is 56 characters, or 44 characters when
multiline mode is active.

	+[no]all

	This option sets or clears the display options +[no]comments,
+[no]rrcomments, and +[no]trust as a group.

	+[no]multiline

	This option prints long records (such as RRSIG, DNSKEY, and SOA records) in a
verbose multi-line format with human-readable comments. The default
is to print each record on a single line, to facilitate machine
parsing of the delv output.

	+[no]dnssec

	This option indicates whether to display RRSIG records in the delv output.
The default is to do so. Note that (unlike in dig) this does
not control whether to request DNSSEC records or to
validate them. DNSSEC records are always requested, and validation
always occurs unless suppressed by the use of -i or
+noroot.

	+[no]root[=ROOT]

	This option indicates whether to perform conventional DNSSEC validation, and if so,
specifies the name of a trust anchor. The default is to validate using a
trust anchor of “.” (the root zone), for which there is a built-in key. If
specifying a different trust anchor, then -a must be used to specify a
file containing the key.

	+[no]tcp

	This option controls whether to use TCP when sending queries. The default is to
use UDP unless a truncated response has been received.

	+[no]unknownformat

	This option prints all RDATA in unknown RR-type presentation format (RFC 3597 [https://tools.ietf.org/html/rfc3597.html]).
The default is to print RDATA for known types in the type’s
presentation format.

	+[no]yaml

	This option prints response data in YAML format.

Files

/etc/bind.keys

/etc/resolv.conf

See Also

dig(1), named(8), RFC 4034 [https://tools.ietf.org/html/rfc4034.html], RFC 4035 [https://tools.ietf.org/html/rfc4035.html], RFC 4431 [https://tools.ietf.org/html/rfc4431.html], RFC 5074 [https://tools.ietf.org/html/rfc5074.html], RFC 5155 [https://tools.ietf.org/html/rfc5155.html].

dig - DNS lookup utility

Synopsis

dig [@server] [-b address] [-c class] [-f filename] [-k filename] [-m] [-p port#] [-q name] [-t type] [-v] [-x addr] [-y [hmac:]name:key] [[-4] | [-6]] [name] [type] [class] [queryopt…]

dig [-h]

dig [global-queryopt…] [query…]

Description

dig is a flexible tool for interrogating DNS name servers. It
performs DNS lookups and displays the answers that are returned from the
name server(s) that were queried. Most DNS administrators use dig to
troubleshoot DNS problems because of its flexibility, ease of use, and
clarity of output. Other lookup tools tend to have less functionality
than dig.

Although dig is normally used with command-line arguments, it also
has a batch mode of operation for reading lookup requests from a file. A
brief summary of its command-line arguments and options is printed when
the -h option is given. The BIND 9
implementation of dig allows multiple lookups to be issued from the
command line.

Unless it is told to query a specific name server, dig tries each
of the servers listed in /etc/resolv.conf. If no usable server
addresses are found, dig sends the query to the local host.

When no command-line arguments or options are given, dig
performs an NS query for “.” (the root).

It is possible to set per-user defaults for dig via
${HOME}/.digrc. This file is read and any options in it are applied
before the command-line arguments. The -r option disables this
feature, for scripts that need predictable behavior.

The IN and CH class names overlap with the IN and CH top-level domain
names. Either use the -t and -c options to specify the type and
class, use the -q to specify the domain name, or use “IN.” and
“CH.” when looking up these top-level domains.

Simple Usage

A typical invocation of dig looks like:

dig @server name type

where:

	server

	is the name or IP address of the name server to query. This can be an
IPv4 address in dotted-decimal notation or an IPv6 address in
colon-delimited notation. When the supplied server argument is a
hostname, dig resolves that name before querying that name
server.

If no server argument is provided, dig consults
/etc/resolv.conf; if an address is found there, it queries the
name server at that address. If either of the -4 or -6
options are in use, then only addresses for the corresponding
transport are tried. If no usable addresses are found, dig
sends the query to the local host. The reply from the name server
that responds is displayed.

	name

	is the name of the resource record that is to be looked up.

	type

	indicates what type of query is required - ANY, A, MX, SIG, etc.
type can be any valid query type. If no type argument is
supplied, dig performs a lookup for an A record.

Options

	-4

	This option indicates that only IPv4 should be used.

	-6

	This option indicates that only IPv6 should be used.

	-b address[#port]

	This option sets the source IP address of the query. The address must be a
valid address on one of the host’s network interfaces, or “0.0.0.0”
or “::”. An optional port may be specified by appending #port.

	-c class

	This option sets the query class. The default class is IN; other classes are
HS for Hesiod records or CH for Chaosnet records.

	-f file

	This option sets batch mode, in which dig reads a list of lookup requests to process from
the given file. Each line in the file should be organized in the
same way it would be presented as a query to dig using the
command-line interface.

	-k keyfile

	This option tells named to sign queries using TSIG using a key read from the given file. Key
files can be generated using tsig-keygen. When using TSIG
authentication with dig, the name server that is queried needs to
know the key and algorithm that is being used. In BIND, this is done
by providing appropriate key and server statements in
named.conf.

	-m

	This option enables memory usage debugging.

	-p port

	This option sends the query to a non-standard port on the server, instead of the
default port 53. This option is used to test a name server that
has been configured to listen for queries on a non-standard port
number.

	-q name

	This option specifies the domain name to query. This is useful to distinguish the name
from other arguments.

	-r

	This option indicates that options from ${HOME}/.digrc should not be read. This is useful for
scripts that need predictable behavior.

	-t type

	This option indicates the resource record type to query, which can be any valid query type. If
it is a resource record type supported in BIND 9, it can be given by
the type mnemonic (such as NS or AAAA). The default query type is
A, unless the -x option is supplied to indicate a reverse
lookup. A zone transfer can be requested by specifying a type of
AXFR. When an incremental zone transfer (IXFR) is required, set the
type to ixfr=N. The incremental zone transfer contains
all changes made to the zone since the serial number in the zone’s
SOA record was N.

All resource record types can be expressed as TYPEnn, where nn is
the number of the type. If the resource record type is not supported
in BIND 9, the result is displayed as described in RFC 3597 [https://tools.ietf.org/html/rfc3597.html].

	-u

	This option indicates that print query times should be provided in microseconds instead of milliseconds.

	-v

	This option prints the version number and exits.

	-x addr

	This option sets simplified reverse lookups, for mapping addresses to names. The
addr is an IPv4 address in dotted-decimal notation, or a
colon-delimited IPv6 address. When the -x option is used, there is no
need to provide the name, class, and type arguments.
dig automatically performs a lookup for a name like
94.2.0.192.in-addr.arpa and sets the query type and class to PTR
and IN respectively. IPv6 addresses are looked up using nibble format
under the IP6.ARPA domain.

	-y [hmac:]keyname:secret

	This option signs queries using TSIG with the given authentication key.
keyname is the name of the key, and secret is the
base64-encoded shared secret. hmac is the name of the key algorithm;
valid choices are hmac-md5, hmac-sha1, hmac-sha224,
hmac-sha256, hmac-sha384, or hmac-sha512. If hmac is
not specified, the default is hmac-md5; if MD5 was disabled, the default is
hmac-sha256.

Note

Only the -k option should be used, rather than the -y option,
because with -y the shared secret is supplied as a command-line
argument in clear text. This may be visible in the output from ps1 or
in a history file maintained by the user’s shell.

Query Options

dig provides a number of query options which affect the way in which
lookups are made and the results displayed. Some of these set or reset
flag bits in the query header, some determine which sections of the
answer get printed, and others determine the timeout and retry
strategies.

Each query option is identified by a keyword preceded by a plus sign
(+). Some keywords set or reset an option; these may be preceded by
the string no to negate the meaning of that keyword. Other keywords
assign values to options, like the timeout interval. They have the form
+keyword=value. Keywords may be abbreviated, provided the
abbreviation is unambiguous; for example, +cd is equivalent to
+cdflag. The query options are:

	+[no]aaflag

	This option is a synonym for +[no]aaonly.

	+[no]aaonly

	This option sets the aa flag in the query.

	+[no]additional

	This option displays [or does not display] the additional section of a reply. The
default is to display it.

	+[no]adflag

	This option sets [or does not set] the AD (authentic data) bit in the query. This
requests the server to return whether all of the answer and authority
sections have been validated as secure, according to the security
policy of the server. AD=1 indicates that all records have been
validated as secure and the answer is not from a OPT-OUT range. AD=0
indicates that some part of the answer was insecure or not validated.
This bit is set by default.

	+[no]all

	This option sets or clears all display flags.

	+[no]answer

	This option displays [or does not display] the answer section of a reply. The default
is to display it.

	+[no]authority

	This option displays [or does not display] the authority section of a reply. The
default is to display it.

	+[no]badcookie

	This option retries the lookup with a new server cookie if a BADCOOKIE response is
received.

	+[no]besteffort

	This option attempts to display the contents of messages which are malformed. The
default is to not display malformed answers.

	+bufsize=B

	This option sets the UDP message buffer size advertised using EDNS0 to B
bytes. The maximum and minimum sizes of this buffer are 65535 and 0,
respectively. Values outside this range are rounded up or down
appropriately. Values other than zero cause an EDNS query to be
sent.

	+[no]cdflag

	This option sets [or does not set] the CD (checking disabled) bit in the query. This
requests the server to not perform DNSSEC validation of responses.

	+[no]class

	This option displays [or does not display] the CLASS when printing the record.

	+[no]cmd

	This option toggles the printing of the initial comment in the output, identifying the
version of dig and the query options that have been applied. This option
always has a global effect; it cannot be set globally and then overridden on a
per-lookup basis. The default is to print this comment.

	+[no]comments

	This option toggles the display of some comment lines in the output, with
information about the packet header and OPT pseudosection, and the names of
the response section. The default is to print these comments.

Other types of comments in the output are not affected by this option, but
can be controlled using other command-line switches. These include
+[no]cmd, +[no]question, +[no]stats, and +[no]rrcomments.

	+[no]cookie=####

	This option sends [or does not send] a COOKIE EDNS option, with an optional value. Replaying a COOKIE
from a previous response allows the server to identify a previous
client. The default is +cookie.

+cookie is also set when +trace is set to better emulate the
default queries from a nameserver.

	+[no]crypto

	This option toggles the display of cryptographic fields in DNSSEC records. The
contents of these fields are unnecessary for debugging most DNSSEC
validation failures and removing them makes it easier to see the
common failures. The default is to display the fields. When omitted,
they are replaced by the string [omitted] or, in the DNSKEY case, the
key ID is displayed as the replacement, e.g. [key id = value].

	+[no]defname

	This option, which is deprecated, is treated as a synonym for +[no]search.

	+[no]dnssec

	This option requests that DNSSEC records be sent by setting the DNSSEC OK (DO) bit in
the OPT record in the additional section of the query.

	+domain=somename

	This option sets the search list to contain the single domain somename, as if
specified in a domain directive in /etc/resolv.conf, and
enables search list processing as if the +search option were
given.

	+dscp=value

	This option sets the DSCP code point to be used when sending the query. Valid DSCP
code points are in the range [0…63]. By default no code point is
explicitly set.

	+[no]edns[=#]

	This option specifies the EDNS version to query with. Valid values are 0 to 255.
Setting the EDNS version causes an EDNS query to be sent.
+noedns clears the remembered EDNS version. EDNS is set to 0 by
default.

	+[no]ednsflags[=#]

	This option sets the must-be-zero EDNS flags bits (Z bits) to the specified value.
Decimal, hex, and octal encodings are accepted. Setting a named flag
(e.g., DO) is silently ignored. By default, no Z bits are set.

	+[no]ednsnegotiation

	This option enables/disables EDNS version negotiation. By default, EDNS version
negotiation is enabled.

	+[no]ednsopt[=code[:value]]

	This option specifies the EDNS option with code point code and an optional payload
of value as a hexadecimal string. code can be either an EDNS
option name (for example, NSID or ECS) or an arbitrary
numeric value. +noednsopt clears the EDNS options to be sent.

	+[no]expire

	This option sends an EDNS Expire option.

	+[no]fail

	This option indicates that named should try [or not try] the next server if a SERVFAIL is received. The default is
to not try the next server, which is the reverse of normal stub
resolver behavior.

	+[no]header-only

	This option sends a query with a DNS header without a question section. The
default is to add a question section. The query type and query name
are ignored when this is set.

	+[no]identify

	This option shows [or does not show] the IP address and port number that supplied
the answer, when the +short option is enabled. If short form
answers are requested, the default is not to show the source address
and port number of the server that provided the answer.

	+[no]idnin

	This option processes [or does not process] IDN domain names on input. This requires
IDN SUPPORT to have been enabled at compile time.

The default is to process IDN input when standard output is a tty.
The IDN processing on input is disabled when dig output is redirected
to files, pipes, and other non-tty file descriptors.

	+[no]idnout

	This option converts [or does not convert] puny code on output. This requires
IDN SUPPORT to have been enabled at compile time.

The default is to process puny code on output when standard output is
a tty. The puny code processing on output is disabled when dig output
is redirected to files, pipes, and other non-tty file descriptors.

	+[no]ignore

	This option ignores [or does not ignore] truncation in UDP responses instead of retrying with TCP. By
default, TCP retries are performed.

	+[no]keepalive

	This option sends [or does not send] an EDNS Keepalive option.

	+[no]keepopen

	This option keeps [or does not keep] the TCP socket open between queries, and reuses it rather than
creating a new TCP socket for each lookup. The default is
+nokeepopen.

	+[no]mapped

	This option allows [or does not allow] mapped IPv4-over-IPv6 addresses to be used. The default is
+mapped.

	+[no]multiline

	This option prints [or does not print] records, like the SOA records, in a verbose multi-line format
with human-readable comments. The default is to print each record on
a single line to facilitate machine parsing of the dig output.

	+ndots=D

	This option sets the number of dots (D) that must appear in name for
it to be considered absolute. The default value is that defined using
the ndots statement in /etc/resolv.conf, or 1 if no ndots
statement is present. Names with fewer dots are interpreted as
relative names, and are searched for in the domains listed in the
search or domain directive in /etc/resolv.conf if
+search is set.

	+[no]nsid

	When enabled, this option includes an EDNS name server ID request when sending a query.

	+[no]nssearch

	When this option is set, dig attempts to find the authoritative
name servers for the zone containing the name being looked up, and
display the SOA record that each name server has for the zone.
Addresses of servers that did not respond are also printed.

	+[no]onesoa

	When enabled, this option prints only one (starting) SOA record when performing an AXFR. The
default is to print both the starting and ending SOA records.

	+[no]opcode=value

	When enabled, this option sets (restores) the DNS message opcode to the specified value. The
default value is QUERY (0).

	+padding=value

	This option pads the size of the query packet using the EDNS Padding option to
blocks of value bytes. For example, +padding=32 causes a
48-byte query to be padded to 64 bytes. The default block size is 0,
which disables padding; the maximum is 512. Values are ordinarily
expected to be powers of two, such as 128; however, this is not
mandatory. Responses to padded queries may also be padded, but only
if the query uses TCP or DNS COOKIE.

	+qid=value

	This option specifies the query ID to use when sending queries.

	+[no]qr

	This option toggles the display of the query message as it is sent. By default, the query
is not printed.

	+[no]question

	This option toggles the display of the question section of a query when an answer is
returned. The default is to print the question section as a comment.

	+[no]raflag

	This option sets [or does not set] the RA (Recursion Available) bit in the query. The
default is +noraflag. This bit is ignored by the server for
QUERY.

	+[no]rdflag

	This option is a synonym for +[no]recurse.

	+[no]recurse

	This option toggles the setting of the RD (recursion desired) bit in the query.
This bit is set by default, which means dig normally sends
recursive queries. Recursion is automatically disabled when the
+nssearch or +trace query option is used.

	+retry=T

	This option sets the number of times to retry UDP queries to server to T
instead of the default, 2. Unlike +tries, this does not include
the initial query.

	+[no]rrcomments

	This option toggles the display of per-record comments in the output (for example,
human-readable key information about DNSKEY records). The default is
not to print record comments unless multiline mode is active.

	+[no]search

	This option uses [or does not use] the search list defined by the searchlist or domain
directive in resolv.conf, if any. The search list is not used by
default.

ndots from resolv.conf (default 1), which may be overridden by
+ndots, determines whether the name is treated as relative
and hence whether a search is eventually performed.

	+[no]short

	This option toggles whether a terse answer is provided. The default is to print the answer in a verbose
form. This option always has a global effect; it cannot be set globally and
then overridden on a per-lookup basis.

	+[no]showsearch

	This option performs [or does not perform] a search showing intermediate results.

	+[no]sigchase

	This feature is now obsolete and has been removed; use delv
instead.

	+split=W

	This option splits long hex- or base64-formatted fields in resource records into
chunks of W characters (where W is rounded up to the nearest
multiple of 4). +nosplit or +split=0 causes fields not to be
split at all. The default is 56 characters, or 44 characters when
multiline mode is active.

	+[no]stats

	This option toggles the printing of statistics: when the query was made, the size of the
reply, etc. The default behavior is to print the query statistics as a
comment after each lookup.

	+[no]subnet=addr[/prefix-length]

	This option sends [or does not send] an EDNS CLIENT-SUBNET option with the specified IP
address or network prefix.

dig +subnet=0.0.0.0/0, or simply dig +subnet=0 for short,
sends an EDNS CLIENT-SUBNET option with an empty address and a source
prefix-length of zero, which signals a resolver that the client’s
address information must not be used when resolving this query.

	+[no]tcflag

	This option sets [or does not set] the TC (TrunCation) bit in the query. The default is
+notcflag. This bit is ignored by the server for QUERY.

	+[no]tcp

	This option uses [or does not use] TCP when querying name servers. The default behavior
is to use UDP unless a type any or ixfr=N query is requested,
in which case the default is TCP. AXFR queries always use TCP.

	+timeout=T

	This option sets the timeout for a query to T seconds. The default timeout is
5 seconds. An attempt to set T to less than 1 is silently set to 1.

	+[no]topdown

	This feature is related to dig +sigchase, which is obsolete and
has been removed. Use delv instead.

	+[no]trace

	This option toggles tracing of the delegation path from the root name servers for
the name being looked up. Tracing is disabled by default. When
tracing is enabled, dig makes iterative queries to resolve the
name being looked up. It follows referrals from the root servers,
showing the answer from each server that was used to resolve the
lookup.

If @server is also specified, it affects only the initial query for
the root zone name servers.

+dnssec is also set when +trace is set, to better emulate the
default queries from a name server.

	+tries=T

	This option sets the number of times to try UDP queries to server to T
instead of the default, 3. If T is less than or equal to zero,
the number of tries is silently rounded up to 1.

	+trusted-key=####

	This option formerly specified trusted keys for use with dig +sigchase. This
feature is now obsolete and has been removed; use delv instead.

	+[no]ttlid

	This option displays [or does not display] the TTL when printing the record.

	+[no]ttlunits

	This option displays [or does not display] the TTL in friendly human-readable time
units of s, m, h, d, and w, representing seconds, minutes,
hours, days, and weeks. This implies +ttlid.

	+[no]unexpected

	This option accepts [or does not accept] answers from unexpected sources. By default, dig
will not accept a reply from a source other than the one to which it sent the
query.

	+[no]unknownformat

	This option prints all RDATA in unknown RR type presentation format (RFC 3597 [https://tools.ietf.org/html/rfc3597.html]).
The default is to print RDATA for known types in the type’s
presentation format.

	+[no]vc

	This option uses [or does not use] TCP when querying name servers. This alternate
syntax to +[no]tcp is provided for backwards compatibility. The
vc stands for “virtual circuit.”

	+[no]yaml

	When enabled, this option prints the responses (and, if +qr is in use, also the
outgoing queries) in a detailed YAML format.

	+[no]zflag

	This option sets [or does not set] the last unassigned DNS header flag in a DNS query.
This flag is off by default.

Multiple Queries

The BIND 9 implementation of dig supports specifying multiple
queries on the command line (in addition to supporting the -f batch
file option). Each of those queries can be supplied with its own set of
flags, options, and query options.

In this case, each query argument represents an individual query in
the command-line syntax described above. Each consists of any of the
standard options and flags, the name to be looked up, an optional query
type and class, and any query options that should be applied to that
query.

A global set of query options, which should be applied to all queries,
can also be supplied. These global query options must precede the first
tuple of name, class, type, options, flags, and query options supplied
on the command line. Any global query options (except +[no]cmd and
+[no]short options) can be overridden by a query-specific set of
query options. For example:

dig +qr www.isc.org any -x 127.0.0.1 isc.org ns +noqr

shows how dig can be used from the command line to make three
lookups: an ANY query for www.isc.org, a reverse lookup of 127.0.0.1,
and a query for the NS records of isc.org. A global query option of
+qr is applied, so that dig shows the initial query it made for
each lookup. The final query has a local query option of +noqr which
means that dig does not print the initial query when it looks up the
NS records for isc.org.

IDN Support

If dig has been built with IDN (internationalized domain name)
support, it can accept and display non-ASCII domain names. dig
appropriately converts character encoding of a domain name before sending
a request to a DNS server or displaying a reply from the server.
To turn off IDN support, use the parameters
+noidnin and +noidnout, or define the IDN_DISABLE environment
variable.

Files

/etc/resolv.conf

${HOME}/.digrc

See Also

delv(1), host(1), named(8), dnssec-keygen(8), RFC 1035 [https://tools.ietf.org/html/rfc1035.html].

Bugs

There are probably too many query options.

dnssec-cds - change DS records for a child zone based on CDS/CDNSKEY

Synopsis

dnssec-cds [-a alg…] [-c class] [-D] {-d dsset-file} {-f child-file} [-i**[extension]] [-s** start-time] [-T ttl] [-u] [-v level] [-V] {domain}

Description

The dnssec-cds command changes DS records at a delegation point
based on CDS or CDNSKEY records published in the child zone. If both CDS
and CDNSKEY records are present in the child zone, the CDS is preferred.
This enables a child zone to inform its parent of upcoming changes to
its key-signing keys (KSKs); by polling periodically with dnssec-cds, the
parent can keep the DS records up-to-date and enable automatic rolling
of KSKs.

Two input files are required. The -f child-file option specifies a
file containing the child’s CDS and/or CDNSKEY records, plus RRSIG and
DNSKEY records so that they can be authenticated. The -d path option
specifies the location of a file containing the current DS records. For
example, this could be a dsset- file generated by
dnssec-signzone, or the output of dnssec-dsfromkey, or the
output of a previous run of dnssec-cds.

The dnssec-cds command uses special DNSSEC validation logic
specified by RFC 7344 [https://tools.ietf.org/html/rfc7344.html]. It requires that the CDS and/or CDNSKEY records
be validly signed by a key represented in the existing DS records. This
is typically the pre-existing KSK.

For protection against replay attacks, the signatures on the child
records must not be older than they were on a previous run of
dnssec-cds. Their age is obtained from the modification time of the
dsset- file, or from the -s option.

To protect against breaking the delegation, dnssec-cds ensures that
the DNSKEY RRset can be verified by every key algorithm in the new DS
RRset, and that the same set of keys are covered by every DS digest
type.

By default, replacement DS records are written to the standard output;
with the -i option the input file is overwritten in place. The
replacement DS records are the same as the existing records, when no
change is required. The output can be empty if the CDS/CDNSKEY records
specify that the child zone wants to be insecure.

Warning

Be careful not to delete the DS records when dnssec-cds fails!

Alternatively, dnssec-cds -u writes an nsupdate script to the
standard output. The -u and -i options can be used together to
maintain a dsset- file as well as emit an nsupdate script.

Options

	-a algorithm

	This option specifies a digest algorithm to use when converting CDNSKEY records to
DS records. This option can be repeated, so that multiple DS records
are created for each CDNSKEY record. This option has no effect when
using CDS records.

The algorithm must be one of SHA-1, SHA-256, or SHA-384. These values
are case-insensitive, and the hyphen may be omitted. If no algorithm
is specified, the default is SHA-256.

	-c class

	This option specifies the DNS class of the zones.

	-D

	This option generates DS records from CDNSKEY records if both CDS and CDNSKEY
records are present in the child zone. By default CDS records are
preferred.

	-d path

	This specifies the location of the parent DS records. The path can be the name of a file
containing the DS records; if it is a directory, dnssec-cds
looks for a dsset- file for the domain inside the directory.

To protect against replay attacks, child records are rejected if they
were signed earlier than the modification time of the dsset-
file. This can be adjusted with the -s option.

	-f child-file

	This option specifies the file containing the child’s CDS and/or CDNSKEY records, plus its
DNSKEY records and the covering RRSIG records, so that they can be
authenticated.

The examples below describe how to generate this file.

	-iextension

	This option updates the dsset- file in place, instead of writing DS records to
the standard output.

There must be no space between the -i and the extension. If
no extension is provided, the old dsset- is discarded. If an
extension is present, a backup of the old dsset- file is kept
with the extension appended to its filename.

To protect against replay attacks, the modification time of the
dsset- file is set to match the signature inception time of the
child records, provided that it is later than the file’s current
modification time.

	-s start-time

	This option specifies the date and time after which RRSIG records become
acceptable. This can be either an absolute or a relative time. An
absolute start time is indicated by a number in YYYYMMDDHHMMSS
notation; 20170827133700 denotes 13:37:00 UTC on August 27th, 2017. A
time relative to the dsset- file is indicated with -N, which is N
seconds before the file modification time. A time relative to the
current time is indicated with now+N.

If no start-time is specified, the modification time of the
dsset- file is used.

	-T ttl

	This option specifies a TTL to be used for new DS records. If not specified, the
default is the TTL of the old DS records. If they had no explicit TTL,
the new DS records also have no explicit TTL.

	-u

	This option writes an nsupdate script to the standard output, instead of
printing the new DS reords. The output is empty if no change is
needed.

Note: The TTL of new records needs to be specified: it can be done in the
original dsset- file, with the -T option, or using the
nsupdate ttl command.

	-V

	This option prints version information.

	-v level

	This option sets the debugging level. Level 1 is intended to be usefully verbose
for general users; higher levels are intended for developers.

	domain

	This indicates the name of the delegation point/child zone apex.

Exit Status

The dnssec-cds command exits 0 on success, or non-zero if an error
occurred.

If successful, the DS records may or may not need to be
changed.

Examples

Before running dnssec-signzone, ensure that the delegations
are up-to-date by running dnssec-cds on every dsset- file.

To fetch the child records required by dnssec-cds, invoke
dig as in the script below. It is acceptable if the dig fails, since
dnssec-cds performs all the necessary checking.

for f in dsset-*
do
 d=${f#dsset-}
 dig +dnssec +noall +answer $d DNSKEY $d CDNSKEY $d CDS |
 dnssec-cds -i -f /dev/stdin -d $f $d
done

When the parent zone is automatically signed by named,
dnssec-cds can be used with nsupdate to maintain a delegation as follows.
The dsset- file allows the script to avoid having to fetch and
validate the parent DS records, and it maintains the replay attack
protection time.

dig +dnssec +noall +answer $d DNSKEY $d CDNSKEY $d CDS |
dnssec-cds -u -i -f /dev/stdin -d $f $d |
nsupdate -l

See Also

dig(1), dnssec-settime(8), dnssec-signzone(8), nsupdate(1), BIND 9 Administrator
Reference Manual, RFC 7344 [https://tools.ietf.org/html/rfc7344.html].

dnssec-dsfromkey - DNSSEC DS RR generation tool

Synopsis

dnssec-dsfromkey [-1 | -2 | -a alg] [-C] [-T TTL] [-v level] [-K directory] {keyfile}

dnssec-dsfromkey [-1 | -2 | -a alg] [-C] [-T TTL] [-v level] [-c class] [-A] {-f file} [dnsname]

dnssec-dsfromkey [-1 | -2 | -a alg] [-C] [-T TTL] [-v level] [-c class] [-K directory] {-s} {dnsname}

dnssec-dsfromkey [-h | -V]

Description

The dnssec-dsfromkey command outputs DS (Delegation Signer) resource records
(RRs), or CDS (Child DS) RRs with the -C option.

The input keys can be specified in a number of ways:

By default, dnssec-dsfromkey reads a key file named in the format
Knnnn.+aaa+iiiii.key, as generated by dnssec-keygen.

With the -f file option, dnssec-dsfromkey reads keys from a zone
file or partial zone file (which can contain just the DNSKEY records).

With the -s option, dnssec-dsfromkey reads a keyset- file,
as generated by dnssec-keygen -C.

Options

	-1

	This option is an abbreviation for -a SHA1.

	-2

	This option is an abbreviation for -a SHA-256.

	-a algorithm

	This option specifies a digest algorithm to use when converting DNSKEY records to
DS records. This option can be repeated, so that multiple DS records
are created for each DNSKEY record.

The algorithm must be one of SHA-1, SHA-256, or SHA-384. These values
are case-insensitive, and the hyphen may be omitted. If no algorithm
is specified, the default is SHA-256.

	-A

	This option indicates that ZSKs are to be included when generating DS records. Without this option, only
keys which have the KSK flag set are converted to DS records and
printed. This option is only useful in -f zone file mode.

	-c class

	This option specifies the DNS class; the default is IN. This option is only useful in -s keyset
or -f zone file mode.

	-C

	This option generates CDS records rather than DS records.

	-f file

	This option sets zone file mode, in which the final dnsname argument of dnssec-dsfromkey is the
DNS domain name of a zone whose master file can be read from
file. If the zone name is the same as file, then it may be
omitted.

If file is -, then the zone data is read from the standard
input. This makes it possible to use the output of the dig
command as input, as in:

dig dnskey example.com | dnssec-dsfromkey -f - example.com

	-h

	This option prints usage information.

	-K directory

	This option tells BIND 9 to look for key files or keyset- files in directory.

	-s

	This option enables keyset mode, in which the final dnsname argument from dnssec-dsfromkey is the DNS
domain name used to locate a keyset- file.

	-T TTL

	This option specifies the TTL of the DS records. By default the TTL is omitted.

	-v level

	This option sets the debugging level.

	-V

	This option prints version information.

Example

To build the SHA-256 DS RR from the Kexample.com.+003+26160 keyfile,
issue the following command:

dnssec-dsfromkey -2 Kexample.com.+003+26160

The command returns something similar to:

example.com. IN DS 26160 5 2 3A1EADA7A74B8D0BA86726B0C227AA85AB8BBD2B2004F41A868A54F0C5EA0B94

Files

The keyfile can be designated by the key identification
Knnnn.+aaa+iiiii or the full file name Knnnn.+aaa+iiiii.key, as
generated by dnssec-keygen.

The keyset file name is built from the directory, the string
keyset-, and the dnsname.

Caveat

A keyfile error may return “file not found,” even if the file exists.

See Also

dnssec-keygen(8), dnssec-signzone(8), BIND 9 Administrator Reference Manual,
RFC 3658 [https://tools.ietf.org/html/rfc3658.html] (DS RRs), RFC 4509 [https://tools.ietf.org/html/rfc4509.html] (SHA-256 for DS RRs),
RFC 6605 [https://tools.ietf.org/html/rfc6605.html] (SHA-384 for DS RRs), RFC 7344 [https://tools.ietf.org/html/rfc7344.html] (CDS and CDNSKEY RRs).

dnssec-importkey - import DNSKEY records from external systems so they can be managed

Synopsis

dnssec-importkey [-K directory] [-L ttl] [-P date/offset] [-P sync date/offset] [-D date/offset] [-D sync date/offset] [-h] [-v level] [-V] {keyfile}

dnssec-importkey {-f filename} [-K directory] [-L ttl] [-P date/offset] [-P sync date/offset] [-D date/offset] [-D sync date/offset] [-h] [-v level] [-V] [dnsname]

Description

dnssec-importkey reads a public DNSKEY record and generates a pair
of .key/.private files. The DNSKEY record may be read from an existing
.key file, in which case a corresponding .private file is
generated, or it may be read from any other file or from the standard
input, in which case both .key and .private files are generated.

The newly created .private file does not contain private key data, and
cannot be used for signing. However, having a .private file makes it
possible to set publication (-P) and deletion (-D) times for the
key, which means the public key can be added to and removed from the
DNSKEY RRset on schedule even if the true private key is stored offline.

Options

	-f filename

	This option indicates the zone file mode. Instead of a public keyfile name, the argument is the
DNS domain name of a zone master file, which can be read from
filename. If the domain name is the same as filename, then it may be
omitted.

If filename is set to "-", then the zone data is read from the
standard input.

	-K directory

	This option sets the directory in which the key files are to reside.

	-L ttl

	This option sets the default TTL to use for this key when it is converted into a
DNSKEY RR. This is the TTL used when the key is imported into a zone,
unless there was already a DNSKEY RRset in
place, in which case the existing TTL takes precedence. Setting the default TTL to 0 or none
removes it from the key.

	-h

	This option emits a usage message and exits.

	-v level

	This option sets the debugging level.

	-V

	This option prints version information.

Timing Options

Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the
argument begins with a + or -, it is interpreted as an offset from
the present time. For convenience, if such an offset is followed by one
of the suffixes y, mo, w, d, h, or mi, then the offset is
computed in years (defined as 365 24-hour days, ignoring leap years),
months (defined as 30 24-hour days), weeks, days, hours, or minutes,
respectively. Without a suffix, the offset is computed in seconds. To
explicitly prevent a date from being set, use none or never.

	-P date/offset

	This option sets the date on which a key is to be published to the zone. After
that date, the key is included in the zone but is not used
to sign it.

	-P sync date/offset

	This option sets the date on which CDS and CDNSKEY records that match this key
are to be published to the zone.

	-D date/offset

	This option sets the date on which the key is to be deleted. After that date, the
key is no longer included in the zone. (However, it may remain in the key
repository.)

	-D sync date/offset

	This option sets the date on which the CDS and CDNSKEY records that match this
key are to be deleted.

Files

A keyfile can be designed by the key identification Knnnn.+aaa+iiiii
or the full file name Knnnn.+aaa+iiiii.key, as generated by
dnssec-keygen.

See Also

dnssec-keygen(8), dnssec-signzone(8), BIND 9 Administrator Reference Manual,
RFC 5011 [https://tools.ietf.org/html/rfc5011.html].

dnssec-keyfromlabel - DNSSEC key generation tool

Synopsis

dnssec-keyfromlabel {-l label} [-3] [-a algorithm] [-A date/offset] [-c class] [-D date/offset] [-D sync date/offset] [-E engine] [-f flag] [-G] [-I date/offset] [-i interval] [-k] [-K directory] [-L ttl] [-n nametype] [-P date/offset] [-P sync date/offset] [-p protocol] [-R date/offset] [-S key] [-t type] [-v level] [-V] [-y] {name}

Description

dnssec-keyfromlabel generates a pair of key files that reference a
key object stored in a cryptographic hardware service module (HSM). The
private key file can be used for DNSSEC signing of zone data as if it
were a conventional signing key created by dnssec-keygen, but the
key material is stored within the HSM and the actual signing takes
place there.

The name of the key is specified on the command line. This must
match the name of the zone for which the key is being generated.

Options

	-a algorithm

	This option selects the cryptographic algorithm. The value of algorithm must
be one of RSASHA1, NSEC3RSASHA1, RSASHA256, RSASHA512,
ECDSAP256SHA256, ECDSAP384SHA384, ED25519, or ED448.

If no algorithm is specified, RSASHA1 is used by default
unless the -3 option is specified, in which case NSEC3RSASHA1
is used instead. (If -3 is used and an algorithm is
specified, that algorithm is checked for compatibility with
NSEC3.)

These values are case-insensitive. In some cases, abbreviations are
supported, such as ECDSA256 for ECDSAP256SHA256 and ECDSA384 for
ECDSAP384SHA384. If RSASHA1 is specified along with the -3
option, then NSEC3RSASHA1 is used instead.

Since BIND 9.12.0, this option is mandatory except when using the
-S option, which copies the algorithm from the predecessory key.
Previously, the default for newly generated keys was RSASHA1.

	-3

	This option uses an NSEC3-capable algorithm to generate a DNSSEC key. If this
option is used with an algorithm that has both NSEC and NSEC3
versions, then the NSEC3 version is used; for example,
dnssec-keygen -3a RSASHA1 specifies the NSEC3RSASHA1 algorithm.

	-E engine

	This option specifies the cryptographic hardware to use.

When BIND 9 is built with OpenSSL PKCS#11 support, this defaults to the
string pkcs11, which identifies an OpenSSL engine that can drive a
cryptographic accelerator or hardware service module. When BIND is
built with native PKCS#11 cryptography (--enable-native-pkcs11), it
defaults to the path of the PKCS#11 provider library specified via
--with-pkcs11.

	-l label

	This option specifies the label for a key pair in the crypto hardware.

When BIND 9 is built with OpenSSL-based PKCS#11 support, the label is
an arbitrary string that identifies a particular key. It may be
preceded by an optional OpenSSL engine name, followed by a colon, as
in pkcs11:keylabel.

When BIND 9 is built with native PKCS#11 support, the label is a
PKCS#11 URI string in the format
pkcs11:keyword\ =value[;\ keyword\ =value;...]. Keywords
include token, which identifies the HSM; object, which identifies
the key; and pin-source, which identifies a file from which the
HSM’s PIN code can be obtained. The label is stored in the
on-disk private file.

If the label contains a pin-source field, tools using the
generated key files are able to use the HSM for signing and other
operations without any need for an operator to manually enter a PIN.
Note: Making the HSM’s PIN accessible in this manner may reduce the
security advantage of using an HSM; use caution
with this feature.

	-n nametype

	This option specifies the owner type of the key. The value of nametype must
either be ZONE (for a DNSSEC zone key (KEY/DNSKEY)), HOST or ENTITY
(for a key associated with a host (KEY)), USER (for a key associated
with a user (KEY)), or OTHER (DNSKEY). These values are
case-insensitive.

	-C

	This option enables compatibility mode, which generates an old-style key, without any metadata.
By default, dnssec-keyfromlabel includes the key’s creation
date in the metadata stored with the private key; other dates may
be set there as well, including publication date, activation date, etc. Keys
that include this data may be incompatible with older versions of
BIND; the -C option suppresses them.

	-c class

	This option indicates that the DNS record containing the key should have the
specified class. If not specified, class IN is used.

	-f flag

	This option sets the specified flag in the flag field of the KEY/DNSKEY record.
The only recognized flags are KSK (Key-Signing Key) and REVOKE.

	-G

	This option generates a key, but does not publish it or sign with it. This option is
incompatible with -P and -A.

	-h

	This option prints a short summary of the options and arguments to
dnssec-keyfromlabel.

	-K directory

	This option sets the directory in which the key files are to be written.

	-k

	This option generates KEY records rather than DNSKEY records.

	-L ttl

	This option sets the default TTL to use for this key when it is converted into a
DNSKEY RR. This is the TTL used when the key is imported into a zone,
unless there was already a DNSKEY RRset in
place, in which case the existing TTL would take precedence. Setting
the default TTL to 0 or none removes it.

	-p protocol

	This option sets the protocol value for the key. The protocol is a number between
0 and 255. The default is 3 (DNSSEC). Other possible values for this
argument are listed in RFC 2535 [https://tools.ietf.org/html/rfc2535.html] and its successors.

	-S key

	This option generates a key as an explicit successor to an existing key. The name,
algorithm, size, and type of the key are set to match the
predecessor. The activation date of the new key is set to the
inactivation date of the existing one. The publication date is
set to the activation date minus the prepublication interval, which
defaults to 30 days.

	-t type

	This option indicates the type of the key. type must be one of AUTHCONF,
NOAUTHCONF, NOAUTH, or NOCONF. The default is AUTHCONF. AUTH refers
to the ability to authenticate data, and CONF to the ability to encrypt
data.

	-v level

	This option sets the debugging level.

	-V

	This option prints version information.

	-y

	This option allows DNSSEC key files to be generated even if the key ID would
collide with that of an existing key, in the event of either key
being revoked. (This is only safe to enable if
RFC 5011 [https://tools.ietf.org/html/rfc5011.html] trust anchor maintenance is not used with either of the keys
involved.)

Timing Options

Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the
argument begins with a + or -, it is interpreted as an offset from
the present time. For convenience, if such an offset is followed by one
of the suffixes y, mo, w, d, h, or mi, then the offset is
computed in years (defined as 365 24-hour days, ignoring leap years),
months (defined as 30 24-hour days), weeks, days, hours, or minutes,
respectively. Without a suffix, the offset is computed in seconds. To
explicitly prevent a date from being set, use none or never.

	-P date/offset

	This option sets the date on which a key is to be published to the zone. After
that date, the key is included in the zone but is not used
to sign it. If not set, and if the -G option has not been used, the
default is the current date.

	-P sync date/offset

	This option sets the date on which CDS and CDNSKEY records that match this key
are to be published to the zone.

	-A date/offset

	This option sets the date on which the key is to be activated. After that date,
the key is included in the zone and used to sign it. If not set,
and if the -G option has not been used, the default is the current date.

	-R date/offset

	This option sets the date on which the key is to be revoked. After that date, the
key is flagged as revoked. It is included in the zone and
is used to sign it.

	-I date/offset

	This option sets the date on which the key is to be retired. After that date, the
key is still included in the zone, but it is not used to
sign it.

	-D date/offset

	This option sets the date on which the key is to be deleted. After that date, the
key is no longer included in the zone. (However, it may remain in the key
repository.)

	-D sync date/offset

	This option sets the date on which the CDS and CDNSKEY records that match this
key are to be deleted.

	-i interval

	This option sets the prepublication interval for a key. If set, then the
publication and activation dates must be separated by at least this
much time. If the activation date is specified but the publication
date is not, the publication date defaults to this much time
before the activation date; conversely, if the publication date is
specified but not the activation date, activation is set to
this much time after publication.

If the key is being created as an explicit successor to another key,
then the default prepublication interval is 30 days; otherwise it is
zero.

As with date offsets, if the argument is followed by one of the
suffixes y, mo, w, d, h, or mi, the interval is
measured in years, months, weeks, days, hours, or minutes,
respectively. Without a suffix, the interval is measured in seconds.

Generated Key Files

When dnssec-keyfromlabel completes successfully, it prints a string
of the form Knnnn.+aaa+iiiii to the standard output. This is an
identification string for the key files it has generated.

	nnnn is the key name.

	aaa is the numeric representation of the algorithm.

	iiiii is the key identifier (or footprint).

dnssec-keyfromlabel creates two files, with names based on the
printed string. Knnnn.+aaa+iiiii.key contains the public key, and
Knnnn.+aaa+iiiii.private contains the private key.

The .key file contains a DNS KEY record that can be inserted into a
zone file (directly or with an $INCLUDE statement).

The .private file contains algorithm-specific fields. For obvious
security reasons, this file does not have general read permission.

See Also

dnssec-keygen(8), dnssec-signzone(8), BIND 9 Administrator Reference Manual,
RFC 4034 [https://tools.ietf.org/html/rfc4034.html], RFC 7512 [https://tools.ietf.org/html/rfc7512.html].

dnssec-keygen: DNSSEC key generation tool

Synopsis

dnssec-keygen [-3] [-A date/offset] [-a algorithm] [-b keysize] [-C] [-c class] [-D date/offset] [-d bits] [-D sync date/offset] [-E engine] [-f flag] [-G] [-g generator] [-h] [-I date/offset] [-i interval] [-K directory] [-k policy] [-L ttl] [-l file] [-n nametype] [-P date/offset] [-P sync date/offset] [-p protocol] [-q] [-R date/offset] [-S key] [-s strength] [-T rrtype] [-t type] [-V] [-v level] {name}

Description

dnssec-keygen generates keys for DNSSEC (Secure DNS), as defined in
RFC 2535 [https://tools.ietf.org/html/rfc2535.html] and RFC 4034 [https://tools.ietf.org/html/rfc4034.html]. It can also generate keys for use with TSIG
(Transaction Signatures) as defined in RFC 2845 [https://tools.ietf.org/html/rfc2845.html], or TKEY (Transaction
Key) as defined in RFC 2930 [https://tools.ietf.org/html/rfc2930.html].

The name of the key is specified on the command line. For DNSSEC
keys, this must match the name of the zone for which the key is being
generated.

Options

	-3

	This option uses an NSEC3-capable algorithm to generate a DNSSEC key. If this
option is used with an algorithm that has both NSEC and NSEC3
versions, then the NSEC3 version is selected; for example,
dnssec-keygen -3a RSASHA1 specifies the NSEC3RSASHA1 algorithm.

	-a algorithm

	This option selects the cryptographic algorithm. For DNSSEC keys, the value of
algorithm must be one of RSASHA1, NSEC3RSASHA1, RSASHA256,
RSASHA512, ECDSAP256SHA256, ECDSAP384SHA384, ED25519, or ED448. For
TKEY, the value must be DH (Diffie-Hellman); specifying this value
automatically sets the -T KEY option as well.

These values are case-insensitive. In some cases, abbreviations are
supported, such as ECDSA256 for ECDSAP256SHA256 and ECDSA384 for
ECDSAP384SHA384. If RSASHA1 is specified along with the -3
option, NSEC3RSASHA1 is used instead.

This parameter must be specified except when using the -S
option, which copies the algorithm from the predecessor key.

In prior releases, HMAC algorithms could be generated for use as TSIG
keys, but that feature was removed in BIND 9.13.0. Use
tsig-keygen to generate TSIG keys.

	-b keysize

	This option specifies the number of bits in the key. The choice of key size
depends on the algorithm used: RSA keys must be between 1024 and 4096
bits; Diffie-Hellman keys must be between 128 and 4096 bits. Elliptic
curve algorithms do not need this parameter.

If the key size is not specified, some algorithms have pre-defined
defaults. For example, RSA keys for use as DNSSEC zone-signing keys
have a default size of 1024 bits; RSA keys for use as key-signing
keys (KSKs, generated with -f KSK) default to 2048 bits.

	-C

	This option enables compatibility mode, which generates an old-style key, without any timing
metadata. By default, dnssec-keygen includes the key’s
creation date in the metadata stored with the private key; other
dates may be set there as well, including publication date, activation date,
etc. Keys that include this data may be incompatible with older
versions of BIND; the -C option suppresses them.

	-c class

	This option indicates that the DNS record containing the key should have the
specified class. If not specified, class IN is used.

	-d bits

	This option specifies the key size in bits. For the algorithms RSASHA1, NSEC3RSASA1, RSASHA256, and
RSASHA512 the key size must be between 1024 and 4096 bits; DH size is between 128
and 4096 bits. This option is ignored for algorithms ECDSAP256SHA256,
ECDSAP384SHA384, ED25519, and ED448.

	-E engine

	This option specifies the cryptographic hardware to use, when applicable.

When BIND is built with OpenSSL PKCS#11 support, this defaults to the
string pkcs11, which identifies an OpenSSL engine that can drive a
cryptographic accelerator or hardware service module. When BIND is
built with native PKCS#11 cryptography (--enable-native-pkcs11), it
defaults to the path of the PKCS#11 provider library specified via
--with-pkcs11.

	-f flag

	This option sets the specified flag in the flag field of the KEY/DNSKEY record.
The only recognized flags are KSK (Key-Signing Key) and REVOKE.

	-G

	This option generates a key, but does not publish it or sign with it. This option is
incompatible with -P and -A.

	-g generator

	This option indicates the generator to use if generating a Diffie-Hellman key. Allowed
values are 2 and 5. If no generator is specified, a known prime from
RFC 2539 [https://tools.ietf.org/html/rfc2539.html] is used if possible; otherwise the default is 2.

	-h

	This option prints a short summary of the options and arguments to
dnssec-keygen.

	-K directory

	This option sets the directory in which the key files are to be written.

	-k policy

	This option creates keys for a specific dnssec-policy. If a policy uses multiple keys,
dnssec-keygen generates multiple keys. This also
creates a “.state” file to keep track of the key state.

This option creates keys according to the dnssec-policy configuration, hence
it cannot be used at the same time as many of the other options that
dnssec-keygen provides.

	-L ttl

	This option sets the default TTL to use for this key when it is converted into a
DNSKEY RR. This is the TTL used when the key is imported into a zone,
unless there was already a DNSKEY RRset in
place, in which case the existing TTL takes precedence. If this
value is not set and there is no existing DNSKEY RRset, the TTL
defaults to the SOA TTL. Setting the default TTL to 0 or none
is the same as leaving it unset.

	-l file

	This option provides a configuration file that contains a dnssec-policy statement
(matching the policy set with -k).

	-n nametype

	This option specifies the owner type of the key. The value of nametype must
either be ZONE (for a DNSSEC zone key (KEY/DNSKEY)), HOST or ENTITY
(for a key associated with a host (KEY)), USER (for a key associated
with a user (KEY)), or OTHER (DNSKEY). These values are
case-insensitive. The default is ZONE for DNSKEY generation.

	-p protocol

	This option sets the protocol value for the generated key, for use with
-T KEY. The protocol is a number between 0 and 255. The default
is 3 (DNSSEC). Other possible values for this argument are listed in
RFC 2535 [https://tools.ietf.org/html/rfc2535.html] and its successors.

	-q

	This option sets quiet mode, which suppresses unnecessary output, including progress
indication. Without this option, when dnssec-keygen is run
interactively to generate an RSA or DSA key pair, it prints a
string of symbols to stderr indicating the progress of the key
generation. A . indicates that a random number has been found which
passed an initial sieve test; + means a number has passed a single
round of the Miller-Rabin primality test; and a space () means that the
number has passed all the tests and is a satisfactory key.

	-S key

	This option creates a new key which is an explicit successor to an existing key.
The name, algorithm, size, and type of the key are set to match
the existing key. The activation date of the new key is set to
the inactivation date of the existing one. The publication date is
set to the activation date minus the prepublication interval,
which defaults to 30 days.

	-s strength

	This option specifies the strength value of the key. The strength is a number
between 0 and 15, and currently has no defined purpose in DNSSEC.

	-T rrtype

	This option specifies the resource record type to use for the key. rrtype
must be either DNSKEY or KEY. The default is DNSKEY when using a
DNSSEC algorithm, but it can be overridden to KEY for use with
SIG(0).

	-t type

	This option indicates the type of the key for use with -T KEY. type
must be one of AUTHCONF, NOAUTHCONF, NOAUTH, or NOCONF. The default
is AUTHCONF. AUTH refers to the ability to authenticate data, and
CONF to the ability to encrypt data.

	-V

	This option prints version information.

	-v level

	This option sets the debugging level.

Timing Options

Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the
argument begins with a + or -, it is interpreted as an offset from
the present time. For convenience, if such an offset is followed by one
of the suffixes y, mo, w, d, h, or mi, then the offset is
computed in years (defined as 365 24-hour days, ignoring leap years),
months (defined as 30 24-hour days), weeks, days, hours, or minutes,
respectively. Without a suffix, the offset is computed in seconds. To
explicitly prevent a date from being set, use none or never.

	-P date/offset

	This option sets the date on which a key is to be published to the zone. After
that date, the key is included in the zone but is not used
to sign it. If not set, and if the -G option has not been used, the
default is the current date.

	-P sync date/offset

	This option sets the date on which CDS and CDNSKEY records that match this key
are to be published to the zone.

	-A date/offset

	This option sets the date on which the key is to be activated. After that date,
the key is included in the zone and used to sign it. If not set,
and if the -G option has not been used, the default is the current date. If set,
and -P is not set, the publication date is set to the
activation date minus the prepublication interval.

	-R date/offset

	This option sets the date on which the key is to be revoked. After that date, the
key is flagged as revoked. It is included in the zone and
is used to sign it.

	-I date/offset

	This option sets the date on which the key is to be retired. After that date, the
key is still included in the zone, but it is not used to
sign it.

	-D date/offset

	This option sets the date on which the key is to be deleted. After that date, the
key is no longer included in the zone. (However, it may remain in the key
repository.)

	-D sync date/offset

	This option sets the date on which the CDS and CDNSKEY records that match this
key are to be deleted.

	-i interval

	This option sets the prepublication interval for a key. If set, then the
publication and activation dates must be separated by at least this
much time. If the activation date is specified but the publication
date is not, the publication date defaults to this much time
before the activation date; conversely, if the publication date is
specified but not the activation date, activation is set to
this much time after publication.

If the key is being created as an explicit successor to another key,
then the default prepublication interval is 30 days; otherwise it is
zero.

As with date offsets, if the argument is followed by one of the
suffixes y, mo, w, d, h, or mi, the interval is
measured in years, months, weeks, days, hours, or minutes,
respectively. Without a suffix, the interval is measured in seconds.

Generated Keys

When dnssec-keygen completes successfully, it prints a string of the
form Knnnn.+aaa+iiiii to the standard output. This is an
identification string for the key it has generated.

	nnnn is the key name.

	aaa is the numeric representation of the algorithm.

	iiiii is the key identifier (or footprint).

dnssec-keygen creates two files, with names based on the printed
string. Knnnn.+aaa+iiiii.key contains the public key, and
Knnnn.+aaa+iiiii.private contains the private key.

The .key file contains a DNSKEY or KEY record. When a zone is being
signed by named or dnssec-signzone -S, DNSKEY records are
included automatically. In other cases, the .key file can be
inserted into a zone file manually or with an $INCLUDE statement.

The .private file contains algorithm-specific fields. For obvious
security reasons, this file does not have general read permission.

Example

To generate an ECDSAP256SHA256 zone-signing key for the zone
example.com, issue the command:

dnssec-keygen -a ECDSAP256SHA256 example.com

The command prints a string of the form:

Kexample.com.+013+26160

In this example, dnssec-keygen creates the files
Kexample.com.+013+26160.key and Kexample.com.+013+26160.private.

To generate a matching key-signing key, issue the command:

dnssec-keygen -a ECDSAP256SHA256 -f KSK example.com

See Also

dnssec-signzone(8), BIND 9 Administrator Reference Manual, RFC 2539 [https://tools.ietf.org/html/rfc2539.html],
RFC 2845 [https://tools.ietf.org/html/rfc2845.html], RFC 4034 [https://tools.ietf.org/html/rfc4034.html].

dnssec-revoke - set the REVOKED bit on a DNSSEC key

Synopsis

dnssec-revoke [-hr] [-v level] [-V] [-K directory] [-E engine] [-f] [-R] {keyfile}

Description

dnssec-revoke reads a DNSSEC key file, sets the REVOKED bit on the
key as defined in RFC 5011 [https://tools.ietf.org/html/rfc5011.html], and creates a new pair of key files
containing the now-revoked key.

Options

	-h

	This option emits a usage message and exits.

	-K directory

	This option sets the directory in which the key files are to reside.

	-r

	This option indicates to remove the original keyset files after writing the new keyset files.

	-v level

	This option sets the debugging level.

	-V

	This option prints version information.

	-E engine

	This option specifies the cryptographic hardware to use, when applicable.

When BIND 9 is built with OpenSSL PKCS#11 support, this defaults to the
string pkcs11, which identifies an OpenSSL engine that can drive a
cryptographic accelerator or hardware service module. When BIND is
built with native PKCS#11 cryptography (--enable-native-pkcs11), it
defaults to the path of the PKCS#11 provider library specified via
--with-pkcs11.

	-f

	This option indicates a forced overwrite and causes dnssec-revoke to write the new key pair,
even if a file already exists matching the algorithm and key ID of
the revoked key.

	-R

	This option prints the key tag of the key with the REVOKE bit set, but does not
revoke the key.

See Also

dnssec-keygen(8), BIND 9 Administrator Reference Manual, RFC 5011 [https://tools.ietf.org/html/rfc5011.html].

dnssec-settime: set the key timing metadata for a DNSSEC key

Synopsis

dnssec-settime [-f] [-K directory] [-L ttl] [-P date/offset] [-P sync date/offset] [-A date/offset] [-R date/offset] [-I date/offset] [-D date/offset] [-D sync date/offset] [-S key] [-i interval] [-h] [-V] [-v level] [-E engine] {keyfile} [-s] [-g state] [-d state date/offset] [-k state date/offset] [-r state date/offset] [-z state date/offset]

Description

dnssec-settime reads a DNSSEC private key file and sets the key
timing metadata as specified by the -P, -A, -R, -I, and
-D options. The metadata can then be used by dnssec-signzone or
other signing software to determine when a key is to be published,
whether it should be used for signing a zone, etc.

If none of these options is set on the command line,
dnssec-settime simply prints the key timing metadata already stored
in the key.

When key metadata fields are changed, both files of a key pair
(Knnnn.+aaa+iiiii.key and Knnnn.+aaa+iiiii.private) are
regenerated.

Metadata fields are stored in the private file. A
human-readable description of the metadata is also placed in comments in
the key file. The private file’s permissions are always set to be
inaccessible to anyone other than the owner (mode 0600).

When working with state files, it is possible to update the timing metadata in
those files as well with -s. With this option, it is also possible to update key
states with -d (DS), -k (DNSKEY), -r (RRSIG of KSK), or -z
(RRSIG of ZSK). Allowed states are HIDDEN, RUMOURED, OMNIPRESENT, and
UNRETENTIVE.

The goal state of the key can also be set with -g. This should be either
HIDDEN or OMNIPRESENT, representing whether the key should be removed from the
zone or published.

It is NOT RECOMMENDED to manipulate state files manually, except for testing
purposes.

Options

	-f

	This option forces an update of an old-format key with no metadata fields. Without
this option, dnssec-settime fails when attempting to update a
legacy key. With this option, the key is recreated in the new
format, but with the original key data retained. The key’s creation
date is set to the present time. If no other values are
specified, then the key’s publication and activation dates are also
set to the present time.

	-K directory

	This option sets the directory in which the key files are to reside.

	-L ttl

	This option sets the default TTL to use for this key when it is converted into a
DNSKEY RR. This is the TTL used when the key is imported into a zone,
unless there was already a DNSKEY RRset in
place, in which case the existing TTL takes precedence. If this
value is not set and there is no existing DNSKEY RRset, the TTL
defaults to the SOA TTL. Setting the default TTL to 0 or none
removes it from the key.

	-h

	This option emits a usage message and exits.

	-V

	This option prints version information.

	-v level

	This option sets the debugging level.

	-E engine

	This option specifies the cryptographic hardware to use, when applicable.

When BIND is built with OpenSSL PKCS#11 support, this defaults to the
string pkcs11, which identifies an OpenSSL engine that can drive a
cryptographic accelerator or hardware service module. When BIND is
built with native PKCS#11 cryptography (--enable-native-pkcs11), it
defaults to the path of the PKCS#11 provider library specified via
--with-pkcs11.

Timing Options

Dates can be expressed in the format YYYYMMDD or YYYYMMDDHHMMSS. If the
argument begins with a + or -, it is interpreted as an offset from
the present time. For convenience, if such an offset is followed by one
of the suffixes y, mo, w, d, h, or mi, then the offset is
computed in years (defined as 365 24-hour days, ignoring leap years),
months (defined as 30 24-hour days), weeks, days, hours, or minutes,
respectively. Without a suffix, the offset is computed in seconds. To
explicitly prevent a date from being set, use none or never.

	-P date/offset

	This option sets the date on which a key is to be published to the zone. After
that date, the key is included in the zone but is not used
to sign it.

	-P sync date/offset

	This option sets the date on which CDS and CDNSKEY records that match this key
are to be published to the zone.

	-A date/offset

	This option sets the date on which the key is to be activated. After that date,
the key is included in the zone and used to sign it.

	-R date/offset

	This option sets the date on which the key is to be revoked. After that date, the
key is flagged as revoked. It is included in the zone and
is used to sign it.

	-I date/offset

	This option sets the date on which the key is to be retired. After that date, the
key is still included in the zone, but it is not used to
sign it.

	-D date/offset

	This option sets the date on which the key is to be deleted. After that date, the
key is no longer included in the zone. (However, it may remain in the key
repository.)

	-D sync date/offset

	This option sets the date on which the CDS and CDNSKEY records that match this
key are to be deleted.

	-S predecessor key

	This option selects a key for which the key being modified is an explicit
successor. The name, algorithm, size, and type of the predecessor key
must exactly match those of the key being modified. The activation
date of the successor key is set to the inactivation date of the
predecessor. The publication date is set to the activation date
minus the prepublication interval, which defaults to 30 days.

	-i interval

	This option sets the prepublication interval for a key. If set, then the
publication and activation dates must be separated by at least this
much time. If the activation date is specified but the publication
date is not, the publication date defaults to this much time
before the activation date; conversely, if the publication date is
specified but not the activation date, activation is set to
this much time after publication.

If the key is being created as an explicit successor to another key,
then the default prepublication interval is 30 days; otherwise it is
zero.

As with date offsets, if the argument is followed by one of the
suffixes y, mo, w, d, h, or mi, the interval is
measured in years, months, weeks, days, hours, or minutes,
respectively. Without a suffix, the interval is measured in seconds.

Key State Options

To test dnssec-policy it may be necessary to construct keys with artificial
state information; these options are used by the testing framework for that
purpose, but should never be used in production.

Known key states are HIDDEN, RUMOURED, OMNIPRESENT, and UNRETENTIVE.

	-s

	This option indicates that when setting key timing data, the state file should also be updated.

	-g state

	This option sets the goal state for this key. Must be HIDDEN or OMNIPRESENT.

	-d state date/offset

	This option sets the DS state for this key as of the specified date, offset from the current date.

	-k state date/offset

	This option sets the DNSKEY state for this key as of the specified date, offset from the current date.

	-r state date/offset

	This option sets the RRSIG (KSK) state for this key as of the specified date, offset from the current date.

	-z state date/offset

	This option sets the RRSIG (ZSK) state for this key as of the specified date, offset from the current date.

Printing Options

dnssec-settime can also be used to print the timing metadata
associated with a key.

	-u

	This option indicates that times should be printed in Unix epoch format.

	-p C/P/Psync/A/R/I/D/Dsync/all

	This option prints a specific metadata value or set of metadata values. The -p
option may be followed by one or more of the following letters or
strings to indicate which value or values to print: C for the
creation date, P for the publication date, Psync for the CDS
and CDNSKEY publication date, A for the activation date, R
for the revocation date, I for the inactivation date, D for
the deletion date, and Dsync for the CDS and CDNSKEY deletion
date. To print all of the metadata, use all.

See Also

dnssec-keygen(8), dnssec-signzone(8), BIND 9 Administrator Reference Manual,
RFC 5011 [https://tools.ietf.org/html/rfc5011.html].

dnssec-signzone - DNSSEC zone signing tool

Synopsis

dnssec-signzone [-a] [-c class] [-d directory] [-D] [-E engine] [-e end-time] [-f output-file] [-g] [-h] [-i interval] [-I input-format] [-j jitter] [-K directory] [-k key] [-L serial] [-M maxttl] [-N soa-serial-format] [-o origin] [-O output-format] [-P] [-Q] [-q] [-R] [-S] [-s start-time] [-T ttl] [-t] [-u] [-v level] [-V] [-X extended end-time] [-x] [-z] [-3 salt] [-H iterations] [-A] {zonefile} [key…]

Description

dnssec-signzone signs a zone; it generates NSEC and RRSIG records
and produces a signed version of the zone. The security status of
delegations from the signed zone (that is, whether the child zones are
secure) is determined by the presence or absence of a keyset
file for each child zone.

Options

	-a

	This option verifies all generated signatures.

	-c class

	This option specifies the DNS class of the zone.

	-C

	This option sets compatibility mode, in which a keyset-zonename file is generated in addition
to dsset-zonename when signing a zone, for use by older versions
of dnssec-signzone.

	-d directory

	This option indicates the directory where BIND 9 should look for dsset- or keyset- files.

	-D

	This option indicates that only those record types automatically managed by
dnssec-signzone, i.e., RRSIG, NSEC, NSEC3 and NSEC3PARAM records, should be included in the output.
If smart signing (-S) is used, DNSKEY records are also included.
The resulting file can be included in the original zone file with
$INCLUDE. This option cannot be combined with -O raw,
-O map, or serial-number updating.

	-E engine

	This option specifies the hardware to use for cryptographic
operations, such as a secure key store used for signing, when applicable.

When BIND is built with OpenSSL PKCS#11 support, this defaults to the
string pkcs11, which identifies an OpenSSL engine that can drive a
cryptographic accelerator or hardware service module. When BIND is
built with native PKCS#11 cryptography (--enable-native-pkcs11), it
defaults to the path of the PKCS#11 provider library specified via
--with-pkcs11.

	-g

	This option indicates that DS records for child zones should be generated from a dsset- or keyset-
file. Existing DS records are removed.

	-K directory

	This option specifies the directory to search for DNSSEC keys. If not
specified, it defaults to the current directory.

	-k key

	This option tells BIND 9 to treat the specified key as a key-signing key, ignoring any key flags. This
option may be specified multiple times.

	-M maxttl

	This option sets the maximum TTL for the signed zone. Any TTL higher than maxttl
in the input zone is reduced to maxttl in the output. This
provides certainty as to the largest possible TTL in the signed zone,
which is useful to know when rolling keys. The maxttl is the longest
possible time before signatures that have been retrieved by resolvers
expire from resolver caches. Zones that are signed with this
option should be configured to use a matching max-zone-ttl in
named.conf. (Note: This option is incompatible with -D,
because it modifies non-DNSSEC data in the output zone.)

	-s start-time

	This option specifies the date and time when the generated RRSIG records become
valid. This can be either an absolute or relative time. An absolute
start time is indicated by a number in YYYYMMDDHHMMSS notation;
20000530144500 denotes 14:45:00 UTC on May 30th, 2000. A relative
start time is indicated by +N, which is N seconds from the current
time. If no start-time is specified, the current time minus 1
hour (to allow for clock skew) is used.

	-e end-time

	This option specifies the date and time when the generated RRSIG records expire. As
with start-time, an absolute time is indicated in YYYYMMDDHHMMSS
notation. A time relative to the start time is indicated with +N,
which is N seconds from the start time. A time relative to the
current time is indicated with now+N. If no end-time is
specified, 30 days from the start time is the default.
end-time must be later than start-time.

	-X extended end-time

	This option specifies the date and time when the generated RRSIG records for the
DNSKEY RRset expire. This is to be used in cases when the DNSKEY
signatures need to persist longer than signatures on other records;
e.g., when the private component of the KSK is kept offline and the
KSK signature is to be refreshed manually.

As with end-time, an absolute time is indicated in
YYYYMMDDHHMMSS notation. A time relative to the start time is
indicated with +N, which is N seconds from the start time. A time
relative to the current time is indicated with now+N. If no
extended end-time is specified, the value of end-time is used
as the default. (end-time, in turn, defaults to 30 days from the
start time.) extended end-time must be later than start-time.

	-f output-file

	This option indicates the name of the output file containing the signed zone. The default
is to append .signed to the input filename. If output-file is
set to -, then the signed zone is written to the standard
output, with a default output format of full.

	-h

	This option prints a short summary of the options and arguments to
dnssec-signzone.

	-V

	This option prints version information.

	-i interval

	This option indicates that, when a previously signed zone is passed as input, records may be
re-signed. The interval option specifies the cycle interval as an
offset from the current time, in seconds. If a RRSIG record expires
after the cycle interval, it is retained; otherwise, it is considered
to be expiring soon and it is replaced.

The default cycle interval is one quarter of the difference between
the signature end and start times. So if neither end-time nor
start-time is specified, dnssec-signzone generates
signatures that are valid for 30 days, with a cycle interval of 7.5
days. Therefore, if any existing RRSIG records are due to expire in
less than 7.5 days, they are replaced.

	-I input-format

	This option sets the format of the input zone file. Possible formats are text
(the default), raw, and map. This option is primarily
intended to be used for dynamic signed zones, so that the dumped zone
file in a non-text format containing updates can be signed directly.
This option is not useful for non-dynamic zones.

	-j jitter

	When signing a zone with a fixed signature lifetime, all RRSIG
records issued at the time of signing expire simultaneously. If the
zone is incrementally signed, i.e., a previously signed zone is passed
as input to the signer, all expired signatures must be regenerated
at approximately the same time. The jitter option specifies a jitter
window that is used to randomize the signature expire time, thus
spreading incremental signature regeneration over time.

Signature lifetime jitter also, to some extent, benefits validators and
servers by spreading out cache expiration, i.e., if large numbers of
RRSIGs do not expire at the same time from all caches, there is
less congestion than if all validators need to refetch at around the
same time.

	-L serial

	When writing a signed zone to “raw” or “map” format, this option sets the “source
serial” value in the header to the specified serial number. (This is
expected to be used primarily for testing purposes.)

	-n ncpus

	This option specifies the number of threads to use. By default, one thread is
started for each detected CPU.

	-N soa-serial-format

	This option sets the SOA serial number format of the signed zone. Possible formats are
keep (the default), increment, unixtime, and
date.

	keep

	This format indicates that the SOA serial number should not be modified.

	increment

	This format increments the SOA serial number using RFC 1982 [https://tools.ietf.org/html/rfc1982.html] arithmetic.

	unixtime

	This format sets the SOA serial number to the number of seconds since the beginning of the Unix epoch.

	date

	This format sets the SOA serial number to today’s date, in YYYYMMDDNN format.

	-o origin

	This option sets the zone origin. If not specified, the name of the zone file is
assumed to be the origin.

	-O output-format

	This option sets the format of the output file containing the signed zone. Possible
formats are text (the default), which is the standard textual
representation of the zone; full, which is text output in a
format suitable for processing by external scripts; and map,
raw, and raw=N, which store the zone in binary formats
for rapid loading by named. raw=N specifies the format
version of the raw zone file: if N is 0, the raw file can be read by
any version of named; if N is 1, the file can be read by release
9.9.0 or higher. The default is 1.

	-P

	This option disables post-sign verification tests.

The post-sign verification tests ensure that for each algorithm in
use there is at least one non-revoked self-signed KSK key, that all
revoked KSK keys are self-signed, and that all records in the zone
are signed by the algorithm. This option skips these tests.

	-Q

	This option removes signatures from keys that are no longer active.

Normally, when a previously signed zone is passed as input to the
signer, and a DNSKEY record has been removed and replaced with a new
one, signatures from the old key that are still within their validity
period are retained. This allows the zone to continue to validate
with cached copies of the old DNSKEY RRset. The -Q option forces
dnssec-signzone to remove signatures from keys that are no longer
active. This enables ZSK rollover using the procedure described in
RFC 4641#4.2.1.1 [https://tools.ietf.org/html/rfc4641.html#4.2.1.1] (“Pre-Publish Key Rollover”).

	-q

	This option enables quiet mode, which suppresses unnecessary output. Without this option, when
dnssec-signzone is run it prints three pieces of information to standard output: the number of
keys in use; the algorithms used to verify the zone was signed correctly and
other status information; and the filename containing the signed
zone. With the option that output is suppressed, leaving only the filename.

	-R

	This option removes signatures from keys that are no longer published.

This option is similar to -Q, except it forces
dnssec-signzone to remove signatures from keys that are no longer
published. This enables ZSK rollover using the procedure described in
RFC 4641#4.2.1.2 [https://tools.ietf.org/html/rfc4641.html#4.2.1.2] (“Double Signature Zone Signing Key
Rollover”).

	-S

	This option enables smart signing, which instructs dnssec-signzone to search the key
repository for keys that match the zone being signed, and to include
them in the zone if appropriate.

When a key is found, its timing metadata is examined to determine how
it should be used, according to the following rules. Each successive
rule takes priority over the prior ones:

If no timing metadata has been set for the key, the key is
published in the zone and used to sign the zone.

If the key’s publication date is set and is in the past, the key
is published in the zone.

If the key’s activation date is set and is in the past, the key is
published (regardless of publication date) and used to sign the
zone.

If the key’s revocation date is set and is in the past, and the key
is published, then the key is revoked, and the revoked key is used
to sign the zone.

If either the key’s unpublication or deletion date is set and
in the past, the key is NOT published or used to sign the zone,
regardless of any other metadata.

If the key’s sync publication date is set and is in the past,
synchronization records (type CDS and/or CDNSKEY) are created.

If the key’s sync deletion date is set and is in the past,
synchronization records (type CDS and/or CDNSKEY) are removed.

	-T ttl

	This option specifies a TTL to be used for new DNSKEY records imported into the
zone from the key repository. If not specified, the default is the
TTL value from the zone’s SOA record. This option is ignored when
signing without -S, since DNSKEY records are not imported from
the key repository in that case. It is also ignored if there are any
pre-existing DNSKEY records at the zone apex, in which case new
records’ TTL values are set to match them, or if any of the
imported DNSKEY records had a default TTL value. In the event of a
conflict between TTL values in imported keys, the shortest one is
used.

	-t

	This option prints statistics at completion.

	-u

	This option updates the NSEC/NSEC3 chain when re-signing a previously signed zone.
With this option, a zone signed with NSEC can be switched to NSEC3,
or a zone signed with NSEC3 can be switched to NSEC or to NSEC3 with
different parameters. Without this option, dnssec-signzone
retains the existing chain when re-signing.

	-v level

	This option sets the debugging level.

	-x

	This option indicates that BIND 9 should only sign the DNSKEY, CDNSKEY, and CDS RRsets with key-signing keys,
and should omit signatures from zone-signing keys. (This is similar to the
dnssec-dnskey-kskonly yes; zone option in named.)

	-z

	This option indicates that BIND 9 should ignore the KSK flag on keys when determining what to sign. This causes
KSK-flagged keys to sign all records, not just the DNSKEY RRset.
(This is similar to the update-check-ksk no; zone option in
named.)

	-3 salt

	This option generates an NSEC3 chain with the given hex-encoded salt. A dash
(-) can be used to indicate that no salt is to be used when
generating the NSEC3 chain.

	-H iterations

	This option indicates that, when generating an NSEC3 chain, BIND 9 should use this many iterations. The default
is 10.

	-A

	This option indicates that, when generating an NSEC3 chain, BIND 9 should set the OPTOUT flag on all NSEC3
records and should not generate NSEC3 records for insecure delegations.

Using this option twice (i.e., -AA) turns the OPTOUT flag off for
all records. This is useful when using the -u option to modify an
NSEC3 chain which previously had OPTOUT set.

	zonefile

	This option sets the file containing the zone to be signed.

	key

	This option specifies which keys should be used to sign the zone. If no keys are
specified, the zone is examined for DNSKEY records at the
zone apex. If these records are found and there are matching private keys in
the current directory, they are used for signing.

Example

The following command signs the example.com zone with the
ECDSAP256SHA256 key generated by dnssec-keygen
(Kexample.com.+013+17247). Because the -S option is not being used,
the zone’s keys must be in the master file (db.example.com). This
invocation looks for dsset files in the current directory, so that
DS records can be imported from them (-g).

% dnssec-signzone -g -o example.com db.example.com \
Kexample.com.+013+17247
db.example.com.signed
%

In the above example, dnssec-signzone creates the file
db.example.com.signed. This file should be referenced in a zone
statement in the named.conf file.

This example re-signs a previously signed zone with default parameters.
The private keys are assumed to be in the current directory.

% cp db.example.com.signed db.example.com
% dnssec-signzone -o example.com db.example.com
db.example.com.signed
%

See Also

dnssec-keygen(8), BIND 9 Administrator Reference Manual, RFC 4033 [https://tools.ietf.org/html/rfc4033.html],
RFC 4641 [https://tools.ietf.org/html/rfc4641.html].

dnssec-verify - DNSSEC zone verification tool

Synopsis

dnssec-verify [-c class] [-E engine] [-I input-format] [-o origin] [-q] [-v level] [-V] [-x] [-z] {zonefile}

Description

dnssec-verify verifies that a zone is fully signed for each
algorithm found in the DNSKEY RRset for the zone, and that the
NSEC/NSEC3 chains are complete.

Options

	-c class

	This option specifies the DNS class of the zone.

	-E engine

	This option specifies the cryptographic hardware to use, when applicable.

When BIND is built with OpenSSL PKCS#11 support, this defaults to the
string pkcs11, which identifies an OpenSSL engine that can drive a
cryptographic accelerator or hardware service module. When BIND is
built with native PKCS#11 cryptography (--enable-native-pkcs11), it
defaults to the path of the PKCS#11 provider library specified via
--with-pkcs11.

	-I input-format

	This option sets the format of the input zone file. Possible formats are text
(the default) and raw. This option is primarily intended to be used
for dynamic signed zones, so that the dumped zone file in a non-text
format containing updates can be verified independently.
This option is not useful for non-dynamic zones.

	-o origin

	This option indicates the zone origin. If not specified, the name of the zone file is
assumed to be the origin.

	-v level

	This option sets the debugging level.

	-V

	This option prints version information.

	-q

	This option sets quiet mode, which suppresses output. Without this option, when dnssec-verify
is run it prints to standard output the number of keys in use, the
algorithms used to verify the zone was signed correctly, and other status
information. With this option, all non-error output is suppressed, and only the exit
code indicates success.

	-x

	This option verifies only that the DNSKEY RRset is signed with key-signing keys.
Without this flag, it is assumed that the DNSKEY RRset is signed
by all active keys. When this flag is set, it is not an error if
the DNSKEY RRset is not signed by zone-signing keys. This corresponds
to the -x option in dnssec-signzone.

	-z

	This option indicates that the KSK flag on the keys should be ignored when determining whether the zone is
correctly signed. Without this flag, it is assumed that there is
a non-revoked, self-signed DNSKEY with the KSK flag set for each
algorithm, and that RRsets other than DNSKEY RRset are signed with
a different DNSKEY without the KSK flag set.

With this flag set, BIND 9 only requires that for each algorithm, there
be at least one non-revoked, self-signed DNSKEY, regardless of
the KSK flag state, and that other RRsets be signed by a
non-revoked key for the same algorithm that includes the self-signed
key; the same key may be used for both purposes. This corresponds to
the -z option in dnssec-signzone.

	zonefile

	This option indicates the file containing the zone to be signed.

See Also

dnssec-signzone(8), BIND 9 Administrator Reference Manual, RFC 4033 [https://tools.ietf.org/html/rfc4033.html].

dnstap-read - print dnstap data in human-readable form

Synopsis

dnstap-read [-m] [-p] [-x] [-y] {file}

Description

dnstap-read reads dnstap data from a specified file and prints
it in a human-readable format. By default, dnstap data is printed in
a short summary format, but if the -y option is specified, a
longer and more detailed YAML format is used.

Options

	-m

	This option indicates trace memory allocations, and is used for debugging memory leaks.

	-p

	This option prints the text form of the DNS
message that was encapsulated in the dnstap frame, after printing the dnstap data.

	-x

	This option prints a hex dump of the wire form
of the DNS message that was encapsulated in the dnstap frame, after printing the dnstap data.

	-y

	This option prints dnstap data in a detailed YAML format.

See Also

named(8), rndc(8), BIND 9 Administrator Reference Manual.

filter-aaaa.so - filter AAAA in DNS responses when A is present

Synopsis

plugin query “filter-aaaa.so” [{ parameters }];

Description

filter-aaaa.so is a query plugin module for named, enabling
named to omit some IPv6 addresses when responding to clients.

Until BIND 9.12, this feature was implemented natively in named and
enabled with the filter-aaaa ACL and the filter-aaaa-on-v4 and
filter-aaaa-on-v6 options. These options are now deprecated in
named.conf but can be passed as parameters to the
filter-aaaa.so plugin, for example:

plugin query "/usr/local/lib/filter-aaaa.so" {
 filter-aaaa-on-v4 yes;
 filter-aaaa-on-v6 yes;
 filter-aaaa { 192.0.2.1; 2001:db8:2::1; };
};

This module is intended to aid transition from IPv4 to IPv6 by
withholding IPv6 addresses from DNS clients which are not connected to
the IPv6 Internet, when the name being looked up has an IPv4 address
available. Use of this module is not recommended unless absolutely
necessary.

Note: This mechanism can erroneously cause other servers not to give
AAAA records to their clients. If a recursing server with both IPv6 and
IPv4 network connections queries an authoritative server using this
mechanism via IPv4, it is denied AAAA records even if its client is
using IPv6.

Options

	filter-aaaa

	This option specifies a list of client addresses for which AAAA filtering is to
be applied. The default is any.

	filter-aaaa-on-v4

	If set to yes, this option indicates that the DNS client is at an IPv4 address, in
filter-aaaa. If the response does not include DNSSEC
signatures, then all AAAA records are deleted from the response. This
filtering applies to all responses, not only authoritative
ones.

If set to break-dnssec, then AAAA records are deleted even when
DNSSEC is enabled. As suggested by the name, this causes the response
to fail to verify, because the DNSSEC protocol is designed to detect
deletions.

This mechanism can erroneously cause other servers not to give AAAA
records to their clients. If a recursing server with both IPv6 and IPv4
network connections queries an authoritative server using this
mechanism via IPv4, it is denied AAAA records even if its client is
using IPv6.

	filter-aaaa-on-v6

	This option is identical to filter-aaaa-on-v4, except that it filters AAAA responses
to queries from IPv6 clients instead of IPv4 clients. To filter all
responses, set both options to yes.

See Also

BIND 9 Administrator Reference Manual.

host - DNS lookup utility

Synopsis

host [-aACdlnrsTUwv] [-c class] [-N ndots] [-p port] [-R number] [-t type] [-W wait] [-m flag] [[-4] | [-6]] [-v] [-V] {name} [server]

Description

host is a simple utility for performing DNS lookups. It is normally
used to convert names to IP addresses and vice versa. When no arguments
or options are given, host prints a short summary of its
command-line arguments and options.

name is the domain name that is to be looked up. It can also be a
dotted-decimal IPv4 address or a colon-delimited IPv6 address, in which
case host by default performs a reverse lookup for that address.
server is an optional argument which is either the name or IP
address of the name server that host should query instead of the
server or servers listed in /etc/resolv.conf.

Options

	-4

	This option specifies that only IPv4 should be used for query transport. See also the -6 option.

	-6

	This option specifies that only IPv6 should be used for query transport. See also the -4 option.

	-a

	The -a (“all”) option is normally equivalent to -v -t ANY. It
also affects the behavior of the -l list zone option.

	-A

	The -A (“almost all”) option is equivalent to -a, except that RRSIG,
NSEC, and NSEC3 records are omitted from the output.

	-c class

	This option specifies the query class, which can be used to lookup HS (Hesiod) or CH (Chaosnet)
class resource records. The default class is IN (Internet).

	-C

	This option indicates that named should check consistency, meaning that host queries the SOA records for zone
name from all the listed authoritative name servers for that
zone. The list of name servers is defined by the NS records that are
found for the zone.

	-d

	This option prints debugging traces, and is equivalent to the -v verbose option.

	-l

	This option tells named` to list the zone, meaning the ``host command performs a zone transfer of zone
name and prints out the NS, PTR, and address records (A/AAAA).

Together, the -l -a options print all records in the zone.

	-N ndots

	This option specifies the number of dots (ndots) that have to be in name for it to be
considered absolute. The default value is that defined using the
ndots statement in /etc/resolv.conf, or 1 if no ndots statement
is present. Names with fewer dots are interpreted as relative names,
and are searched for in the domains listed in the search or
domain directive in /etc/resolv.conf.

	-p port

	This option specifies the port to query on the server. The default is 53.

	-r

	This option specifies a non-recursive query; setting this option clears the RD (recursion
desired) bit in the query. This means that the name server
receiving the query does not attempt to resolve name. The -r
option enables host to mimic the behavior of a name server by
making non-recursive queries, and expecting to receive answers to
those queries that can be referrals to other name servers.

	-R number

	This option specifies the number of retries for UDP queries. If number is negative or zero,
the number of retries is silently set to 1. The default value is 1, or
the value of the attempts option in /etc/resolv.conf, if set.

	-s

	This option tells named not to send the query to the next nameserver if any server responds
with a SERVFAIL response, which is the reverse of normal stub
resolver behavior.

	-t type

	This option specifies the query type. The type argument can be any recognized query type:
CNAME, NS, SOA, TXT, DNSKEY, AXFR, etc.

When no query type is specified, host automatically selects an
appropriate query type. By default, it looks for A, AAAA, and MX
records. If the -C option is given, queries are made for SOA
records. If name is a dotted-decimal IPv4 address or
colon-delimited IPv6 address, host queries for PTR records.

If a query type of IXFR is chosen, the starting serial number can be
specified by appending an equals sign (=), followed by the starting serial
number, e.g., -t IXFR=12345678.

	-T; -U

	This option specifies TCP or UDP. By default, host uses UDP when making queries; the
-T option makes it use a TCP connection when querying the name
server. TCP is automatically selected for queries that require
it, such as zone transfer (AXFR) requests. Type ANY queries default
to TCP, but can be forced to use UDP initially via -U.

	-m flag

	This option sets memory usage debugging: the flag can be record, usage, or
trace. The -m option can be specified more than once to set
multiple flags.

	-v

	This option sets verbose output, and is equivalent to the -d debug option. Verbose output
can also be enabled by setting the debug option in
/etc/resolv.conf.

	-V

	This option prints the version number and exits.

	-w

	This option sets “wait forever”: the query timeout is set to the maximum possible. See
also the -W option.

	-W wait

	This options sets the length of the wait timeout, indicating that named should wait for up to wait seconds for a reply. If wait is
less than 1, the wait interval is set to 1 second.

By default, host waits for 5 seconds for UDP responses and 10
seconds for TCP connections. These defaults can be overridden by the
timeout option in /etc/resolv.conf.

See also the -w option.

IDN Support

If host has been built with IDN (internationalized domain name)
support, it can accept and display non-ASCII domain names. host
appropriately converts character encoding of a domain name before sending
a request to a DNS server or displaying a reply from the server.
To turn off IDN support, define the IDN_DISABLE
environment variable. IDN support is disabled if the variable is set
when host runs.

Files

/etc/resolv.conf

See Also

dig(1), named(8).

mdig - DNS pipelined lookup utility

Synopsis

mdig {@server} [-f filename] [-h] [-v] [[-4] | [-6]] [-m] [-b address] [-p port#] [-c class] [-t type] [-i] [-x addr] [plusopt…]

mdig {-h}

mdig [@server] {global-opt…} { {local-opt…} {query} …}

Description

mdig is a multiple/pipelined query version of dig: instead of
waiting for a response after sending each query, it begins by sending
all queries. Responses are displayed in the order in which they are
received, not in the order the corresponding queries were sent.

mdig options are a subset of the dig options, and are divided
into “anywhere options,” which can occur anywhere, “global options,” which
must occur before the query name (or they are ignored with a warning),
and “local options,” which apply to the next query on the command line.

The @server option is a mandatory global option. It is the name or IP
address of the name server to query. (Unlike dig, this value is not
retrieved from /etc/resolv.conf.) It can be an IPv4 address in
dotted-decimal notation, an IPv6 address in colon-delimited notation, or
a hostname. When the supplied server argument is a hostname,
mdig resolves that name before querying the name server.

mdig provides a number of query options which affect the way in
which lookups are made and the results displayed. Some of these set or
reset flag bits in the query header, some determine which sections of
the answer get printed, and others determine the timeout and retry
strategies.

Each query option is identified by a keyword preceded by a plus sign
(+). Some keywords set or reset an option. These may be preceded by
the string no to negate the meaning of that keyword. Other keywords
assign values to options like the timeout interval. They have the form
+keyword=value.

Anywhere Options

	-f

	This option makes mdig operate in batch mode by reading a list
of lookup requests to process from the file filename. The file
contains a number of queries, one per line. Each entry in the file
should be organized in the same way they would be presented as queries
to mdig using the command-line interface.

	-h

	This option causes mdig to print detailed help information, with the full list
of options, and exit.

	-v

	This option causes mdig to print the version number and exit.

Global Options

	-4

	This option forces mdig to only use IPv4 query transport.

	-6

	This option forces mdig to only use IPv6 query transport.

	-b address

	This option sets the source IP address of the query to
address. This must be a valid address on one of the host’s network
interfaces or “0.0.0.0” or “::”. An optional port may be specified by
appending “#<port>”

	-m

	This option enables memory usage debugging.

	-p port#

	This option is used when a non-standard port number is to be
queried. port# is the port number that mdig sends its
queries to, instead of the standard DNS port number 53. This option is
used to test a name server that has been configured to listen for
queries on a non-standard port number.

The global query options are:

	+[no]additional

	This option displays [or does not display] the additional section of a reply. The
default is to display it.

	+[no]all

	This option sets or clears all display flags.

	+[no]answer

	This option displays [or does not display] the answer section of a reply. The default
is to display it.

	+[no]authority

	This option displays [or does not display] the authority section of a reply. The
default is to display it.

	+[no]besteffort

	This option attempts to display [or does not display] the contents of messages which are malformed. The
default is to not display malformed answers.

	+[no]cl

	This option displays [or does not display] the CLASS when printing the record.

	+[no]comments

	This option toggles the display of comment lines in the output. The default is to
print comments.

	+[no]continue

	This option toggles continuation on errors (e.g. timeouts).

	+[no]crypto

	This option toggles the display of cryptographic fields in DNSSEC records. The
contents of these fields are unnecessary to debug most DNSSEC
validation failures and removing them makes it easier to see the
common failures. The default is to display the fields. When omitted,
they are replaced by the string “[omitted]”; in the DNSKEY case, the
key ID is displayed as the replacement, e.g., [key id = value].

	+dscp[=value]

	This option sets the DSCP code point to be used when sending the query. Valid DSCP
code points are in the range [0…63]. By default no code point is
explicitly set.

	+[no]multiline

	This option toggles printing of records, like the SOA records, in a verbose multi-line format
with human-readable comments. The default is to print each record on
a single line, to facilitate machine parsing of the mdig output.

	+[no]question

	This option prints [or does not print] the question section of a query when an answer
is returned. The default is to print the question section as a
comment.

	+[no]rrcomments

	This option toggles the display of per-record comments in the output (for example,
human-readable key information about DNSKEY records). The default is
not to print record comments unless multiline mode is active.

	+[no]short

	This option provides [or does not provide] a terse answer. The default is to print the answer in a
verbose form.

	+split=W

	This option splits long hex- or base64-formatted fields in resource records into
chunks of W characters (where W is rounded up to the nearest
multiple of 4). +nosplit or +split=0 causes fields not to be
split. The default is 56 characters, or 44 characters when
multiline mode is active.

	+[no]tcp

	This option uses [or does not use] TCP when querying name servers. The default behavior
is to use UDP.

	+[no]ttlid

	This option displays [or does not display] the TTL when printing the record.

	+[no]ttlunits

	This option displays [or does not display] the TTL in friendly human-readable time
units of “s”, “m”, “h”, “d”, and “w”, representing seconds, minutes,
hours, days, and weeks. This implies +ttlid.

	+[no]vc

	This option uses [or does not use] TCP when querying name servers. This alternate
syntax to +[no]tcp is provided for backwards compatibility. The
vc stands for “virtual circuit”.

Local Options

	-c class

	This option sets the query class to class. It can be any valid
query class which is supported in BIND 9. The default query class is
“IN”.

	-t type

	This option sets the query type to type. It can be any valid
query type which is supported in BIND 9. The default query type is “A”,
unless the -x option is supplied to indicate a reverse lookup with
the “PTR” query type.

	-x addr

	Reverse lookups - mapping addresses to names - are simplified by
this option. addr is an IPv4 address in dotted-decimal
notation, or a colon-delimited IPv6 address. mdig automatically
performs a lookup for a query name like 11.12.13.10.in-addr.arpa and
sets the query type and class to PTR and IN respectively. By default,
IPv6 addresses are looked up using nibble format under the IP6.ARPA
domain.

The local query options are:

	+[no]aaflag

	This is a synonym for +[no]aaonly.

	+[no]aaonly

	This sets the aa flag in the query.

	+[no]adflag

	This sets [or does not set] the AD (authentic data) bit in the query. This
requests the server to return whether all of the answer and authority
sections have all been validated as secure, according to the security
policy of the server. AD=1 indicates that all records have been
validated as secure and the answer is not from a OPT-OUT range. AD=0
indicates that some part of the answer was insecure or not validated.
This bit is set by default.

	+bufsize=B

	This sets the UDP message buffer size advertised using EDNS0 to B
bytes. The maximum and minimum sizes of this buffer are 65535 and 0
respectively. Values outside this range are rounded up or down
appropriately. Values other than zero cause a EDNS query to be
sent.

	+[no]cdflag

	This sets [or does not set] the CD (checking disabled) bit in the query. This
requests the server to not perform DNSSEC validation of responses.

	+[no]cookie=####

	This sends [or does not send] a COOKIE EDNS option, with an optional value. Replaying a COOKIE
from a previous response allows the server to identify a previous
client. The default is +nocookie.

	+[no]dnssec

	This requests that DNSSEC records be sent by setting the DNSSEC OK (DO) bit in
the OPT record in the additional section of the query.

	+[no]edns[=#]

	This specifies [or does not specify] the EDNS version to query with. Valid values are 0 to 255.
Setting the EDNS version causes an EDNS query to be sent.
+noedns clears the remembered EDNS version. EDNS is set to 0 by
default.

	+[no]ednsflags[=#]

	This sets the must-be-zero EDNS flag bits (Z bits) to the specified value.
Decimal, hex, and octal encodings are accepted. Setting a named flag
(e.g. DO) is silently ignored. By default, no Z bits are set.

	+[no]ednsopt[=code[:value]]

	This specifies [or does not specify] an EDNS option with code point code and an optional payload
of value as a hexadecimal string. +noednsopt clears the EDNS
options to be sent.

	+[no]expire

	This toggles sending of an EDNS Expire option.

	+[no]nsid

	This toggles inclusion of an EDNS name server ID request when sending a query.

	+[no]recurse

	This toggles the setting of the RD (recursion desired) bit in the query.
This bit is set by default, which means mdig normally sends
recursive queries.

	+retry=T

	This sets the number of times to retry UDP queries to server to T
instead of the default, 2. Unlike +tries, this does not include
the initial query.

	+[no]subnet=addr[/prefix-length]

	This sends [or does not send] an EDNS Client Subnet option with the specified IP
address or network prefix.

	mdig +subnet=0.0.0.0/0, or simply mdig +subnet=0

	This sends an EDNS client-subnet option with an empty address and a source
prefix-length of zero, which signals a resolver that the client’s
address information must not be used when resolving this query.

	+timeout=T

	This sets the timeout for a query to T seconds. The default timeout is
5 seconds for UDP transport and 10 for TCP. An attempt to set T
to less than 1 results in a query timeout of 1 second being
applied.

	+tries=T

	This sets the number of times to try UDP queries to server to T
instead of the default, 3. If T is less than or equal to zero,
the number of tries is silently rounded up to 1.

	+udptimeout=T

	This sets the timeout between UDP query retries to T.

	+[no]unknownformat

	This prints [or does not print] all RDATA in unknown RR-type presentation format (see RFC 3597 [https://tools.ietf.org/html/rfc3597.html]).
The default is to print RDATA for known types in the type’s
presentation format.

	+[no]yaml

	This toggles printing of the responses in a detailed YAML format.

	+[no]zflag

	This sets [or does not set] the last unassigned DNS header flag in a DNS query.
This flag is off by default.

See Also

dig(1), RFC 1035 [https://tools.ietf.org/html/rfc1035.html].

named-checkconf - named configuration file syntax checking tool

Synopsis

named-checkconf [-chjlvz] [-p [-x]] [-t directory] {filename}

Description

named-checkconf checks the syntax, but not the semantics, of a
named configuration file. The file, along with all files included by it, is parsed and checked for syntax
errors. If no file is specified,
/etc/named.conf is read by default.

Note: files that named reads in separate parser contexts, such as
rndc.key and bind.keys, are not automatically read by
named-checkconf. Configuration errors in these files may cause
named to fail to run, even if named-checkconf was successful.
However, named-checkconf can be run on these files explicitly.

Options

	-h

	This option prints the usage summary and exits.

	-j

	When loading a zonefile, this option instructs named to read the journal if it exists.

	-l

	This option lists all the configured zones. Each line of output contains the zone
name, class (e.g. IN), view, and type (e.g. primary or secondary).

	-c

	This option specifies that only the “core” configuration should be checked. This suppresses the loading of
plugin modules, and causes all parameters to plugin statements to
be ignored.

	-i

	This option ignores warnings on deprecated options.

	-p

	This option prints out the named.conf and included files in canonical form if
no errors were detected. See also the -x option.

	-t directory

	This option instructs named to chroot to directory, so that include directives in the
configuration file are processed as if run by a similarly chrooted
named.

	-v

	This option prints the version of the named-checkconf program and exits.

	-x

	When printing the configuration files in canonical form, this option obscures
shared secrets by replacing them with strings of question marks
(?). This allows the contents of named.conf and related files
to be shared - for example, when submitting bug reports -
without compromising private data. This option cannot be used without
-p.

	-z

	This option performs a test load of all zones of type primary found in named.conf.

	filename

	This indicates the name of the configuration file to be checked. If not specified,
it defaults to /etc/named.conf.

Return Values

named-checkconf returns an exit status of 1 if errors were detected
and 0 otherwise.

See Also

named(8), named-checkzone(8), BIND 9 Administrator Reference Manual.

named-checkzone, named-compilezone - zone file validity checking or converting tool

Synopsis

named-checkzone [-d] [-h] [-j] [-q] [-v] [-c class] [-f format] [-F format] [-J filename] [-i mode] [-k mode] [-m mode] [-M mode] [-n mode] [-l ttl] [-L serial] [-o filename] [-r mode] [-s style] [-S mode] [-t directory] [-T mode] [-w directory] [-D] [-W mode] {zonename} {filename}

named-compilezone [-d] [-j] [-q] [-v] [-c class] [-C mode] [-f format] [-F format] [-J filename] [-i mode] [-k mode] [-m mode] [-n mode] [-l ttl] [-L serial] [-r mode] [-s style] [-t directory] [-T mode] [-w directory] [-D] [-W mode] {-o filename} {zonename} {filename}

Description

named-checkzone checks the syntax and integrity of a zone file. It
performs the same checks as named does when loading a zone. This
makes named-checkzone useful for checking zone files before
configuring them into a name server.

named-compilezone is similar to named-checkzone, but it always
dumps the zone contents to a specified file in a specified format.
It also applies stricter check levels by default, since the
dump output is used as an actual zone file loaded by named.
When manually specified otherwise, the check levels must at least be as
strict as those specified in the named configuration file.

Options

	-d

	This option enables debugging.

	-h

	This option prints the usage summary and exits.

	-q

	This option sets quiet mode, which only sets an exit code to indicate
successful or failed completion.

	-v

	This option prints the version of the named-checkzone program and exits.

	-j

	When loading a zone file, this option tells named to read the journal if it exists. The journal
file name is assumed to be the zone file name with the
string .jnl appended.

	-J filename

	When loading the zone file, this option tells named to read the journal from the given file, if
it exists. This implies -j.

	-c class

	This option specifies the class of the zone. If not specified, IN is assumed.

	-i mode

	This option performs post-load zone integrity checks. Possible modes are
full (the default), full-sibling, local,
local-sibling, and none.

Mode full checks that MX records refer to A or AAAA records
(both in-zone and out-of-zone hostnames). Mode local only
checks MX records which refer to in-zone hostnames.

Mode full checks that SRV records refer to A or AAAA records
(both in-zone and out-of-zone hostnames). Mode local only
checks SRV records which refer to in-zone hostnames.

Mode full checks that delegation NS records refer to A or AAAA
records (both in-zone and out-of-zone hostnames). It also checks that
glue address records in the zone match those advertised by the child.
Mode local only checks NS records which refer to in-zone
hostnames or verifies that some required glue exists, i.e., when the
name server is in a child zone.

Modes full-sibling and local-sibling disable sibling glue
checks, but are otherwise the same as full and local,
respectively.

Mode none disables the checks.

	-f format

	This option specifies the format of the zone file. Possible formats are text
(the default), raw, and map.

	-F format

	This option specifies the format of the output file specified. For
named-checkzone, this does not have any effect unless it dumps
the zone contents.

Possible formats are text (the default), which is the standard
textual representation of the zone, and map, raw, and
raw=N, which store the zone in a binary format for rapid
loading by named. raw=N specifies the format version of the
raw zone file: if N is 0, the raw file can be read by any version of
named; if N is 1, the file can only be read by release 9.9.0 or
higher. The default is 1.

	-k mode

	This option performs check-names checks with the specified failure mode.
Possible modes are fail (the default for named-compilezone),
warn (the default for named-checkzone), and ignore.

	-l ttl

	This option sets a maximum permissible TTL for the input file. Any record with a
TTL higher than this value causes the zone to be rejected. This
is similar to using the max-zone-ttl option in named.conf.

	-L serial

	When compiling a zone to raw or map format, this option sets the “source
serial” value in the header to the specified serial number. This is
expected to be used primarily for testing purposes.

	-m mode

	This option specifies whether MX records should be checked to see if they are
addresses. Possible modes are fail, warn (the default), and
ignore.

	-M mode

	This option checks whether a MX record refers to a CNAME. Possible modes are
fail, warn (the default), and ignore.

	-n mode

	This option specifies whether NS records should be checked to see if they are
addresses. Possible modes are fail (the default for
named-compilezone), warn (the default for named-checkzone),
and ignore.

	-o filename

	This option writes the zone output to filename. If filename is -, then
the zone output is written to standard output. This is mandatory for named-compilezone.

	-r mode

	This option checks for records that are treated as different by DNSSEC but are
semantically equal in plain DNS. Possible modes are fail,
warn (the default), and ignore.

	-s style

	This option specifies the style of the dumped zone file. Possible styles are
full (the default) and relative. The full format is most
suitable for processing automatically by a separate script.
The relative format is more human-readable and is thus
suitable for editing by hand. For named-checkzone, this does not
have any effect unless it dumps the zone contents. It also does not
have any meaning if the output format is not text.

	-S mode

	This option checks whether an SRV record refers to a CNAME. Possible modes are
fail, warn (the default), and ignore.

	-t directory

	This option tells named to chroot to directory, so that include directives in the
configuration file are processed as if run by a similarly chrooted
named.

	-T mode

	This option checks whether Sender Policy Framework (SPF) records exist and issues a
warning if an SPF-formatted TXT record is not also present. Possible
modes are warn (the default) and ignore.

	-w directory

	This option instructs named to chdir to directory, so that relative filenames in master file
$INCLUDE directives work. This is similar to the directory clause in
named.conf.

	-D

	This option dumps the zone file in canonical format. This is always enabled for
named-compilezone.

	-W mode

	This option specifies whether to check for non-terminal wildcards. Non-terminal
wildcards are almost always the result of a failure to understand the
wildcard matching algorithm (RFC 1034 [https://tools.ietf.org/html/rfc1034.html]). Possible modes are warn
(the default) and ignore.

	zonename

	This indicates the domain name of the zone being checked.

	filename

	This is the name of the zone file.

Return Values

named-checkzone returns an exit status of 1 if errors were detected
and 0 otherwise.

See Also

named(8), named-checkconf(8), RFC 1035 [https://tools.ietf.org/html/rfc1035.html], BIND 9 Administrator Reference
Manual.

named-journalprint - print zone journal in human-readable form

Synopsis

named-journalprint {journal}

Description

named-journalprint prints the contents of a zone journal file in a
human-readable form.

Journal files are automatically created by named when changes are
made to dynamic zones (e.g., by nsupdate). They record each addition
or deletion of a resource record, in binary format, allowing the changes
to be re-applied to the zone when the server is restarted after a
shutdown or crash. By default, the name of the journal file is formed by
appending the extension .jnl to the name of the corresponding zone
file.

named-journalprint converts the contents of a given journal file
into a human-readable text format. Each line begins with add or del,
to indicate whether the record was added or deleted, and continues with
the resource record in master-file format.

See Also

named(8), nsupdate(1), BIND 9 Administrator Reference Manual.

named-nzd2nzf - convert an NZD database to NZF text format

Synopsis

named-nzd2nzf {filename}

Description

named-nzd2nzf converts an NZD database to NZF format and prints it
to standard output. This can be used to review the configuration of
zones that were added to named via rndc addzone. It can also be
used to restore the old file format when rolling back from a newer
version of BIND to an older version.

Arguments

	filename

	This is the name of the .nzd file whose contents should be printed.

See Also

BIND 9 Administrator Reference Manual.

named-rrchecker - syntax checker for individual DNS resource records

Synopsis

named-rrchecker [-h] [-o origin] [-p] [-u] [-C] [-T] [-P]

Description

named-rrchecker reads a individual DNS resource record from standard
input and checks whether it is syntactically correct.

Options

	-h

	This option prints out the help menu.

	-o origin

	This option specifies the origin to be used when interpreting
the record.

	-p

	This option prints out the resulting record in canonical form. If there
is no canonical form defined, the record is printed in unknown
record format.

	-u

	This option prints out the resulting record in unknown record form.

	-C, -T, and -P

	These options print out the known class, standard type,
and private type mnemonics, respectively.

See Also

RFC 1034 [https://tools.ietf.org/html/rfc1034.html], RFC 1035 [https://tools.ietf.org/html/rfc1035.html], named(8).

named.conf - configuration file for named

Synopsis

named.conf

Description

named.conf is the configuration file for named. Statements are
enclosed in braces and terminated with a semi-colon. Clauses in the
statements are also semi-colon terminated. The usual comment styles are
supported:

C style: /* */

C++ style: // to end of line

Unix style: # to end of line

ACL

acl string { address_match_element; ... };

CONTROLS

controls {
 inet (ipv4_address | ipv6_address |
 *) [port (integer | *)] allow
 { address_match_element; ... } [
 keys { string; ... }] [read-only
 boolean];
 unix quoted_string perm integer
 owner integer group integer [
 keys { string; ... }] [read-only
 boolean];
};

DLZ

dlz string {
 database string;
 search boolean;
};

DNSSEC-POLICY

dnssec-policy string {
 dnskey-ttl duration;
 keys { (csk | ksk | zsk) [(key-directory)] lifetime
 duration_or_unlimited algorithm string [integer]; ... };
 max-zone-ttl duration;
 parent-ds-ttl duration;
 parent-propagation-delay duration;
 parent-registration-delay duration;
 publish-safety duration;
 retire-safety duration;
 signatures-refresh duration;
 signatures-validity duration;
 signatures-validity-dnskey duration;
 zone-propagation-delay duration;
};

DYNDB

dyndb string quoted_string {
 unspecified-text };

KEY

key string {
 algorithm string;
 secret string;
};

LOGGING

logging {
 category string { string; ... };
 channel string {
 buffered boolean;
 file quoted_string [versions (unlimited | integer)]
 [size size] [suffix (increment | timestamp)];
 null;
 print-category boolean;
 print-severity boolean;
 print-time (iso8601 | iso8601-utc | local | boolean);
 severity log_severity;
 stderr;
 syslog [syslog_facility];
 };
};

MANAGED-KEYS

See DNSSEC-KEYS.

managed-keys { string (static-key
 | initial-key | static-ds |
 initial-ds) integer integer
 integer quoted_string; ... };, deprecated

MASTERS

masters string [port integer] [dscp
 integer] { (primaries | ipv4_address
 [port integer] | ipv6_address [port
 integer]) [key string]; ... };

OPTIONS

options {
 allow-new-zones boolean;
 allow-notify { address_match_element; ... };
 allow-query { address_match_element; ... };
 allow-query-cache { address_match_element; ... };
 allow-query-cache-on { address_match_element; ... };
 allow-query-on { address_match_element; ... };
 allow-recursion { address_match_element; ... };
 allow-recursion-on { address_match_element; ... };
 allow-transfer { address_match_element; ... };
 allow-update { address_match_element; ... };
 allow-update-forwarding { address_match_element; ... };
 also-notify [port integer] [dscp integer] { (primaries |
 ipv4_address [port integer] | ipv6_address [port
 integer]) [key string]; ... };
 alt-transfer-source (ipv4_address | *) [port (integer | *)
] [dscp integer];
 alt-transfer-source-v6 (ipv6_address | *) [port (integer |
 *)] [dscp integer];
 answer-cookie boolean;
 attach-cache string;
 auth-nxdomain boolean; // default changed
 auto-dnssec (allow | maintain | off);
 automatic-interface-scan boolean;
 avoid-v4-udp-ports { portrange; ... };
 avoid-v6-udp-ports { portrange; ... };
 bindkeys-file quoted_string;
 blackhole { address_match_element; ... };
 cache-file quoted_string;
 catalog-zones { zone string [default-masters [port integer]
 [dscp integer] { (primaries | ipv4_address [port
 integer] | ipv6_address [port integer]) [key
 string]; ... }] [zone-directory quoted_string] [
 in-memory boolean] [min-update-interval duration]; ... };
 check-dup-records (fail | warn | ignore);
 check-integrity boolean;
 check-mx (fail | warn | ignore);
 check-mx-cname (fail | warn | ignore);
 check-names (primary | master |
 secondary | slave | response) (
 fail | warn | ignore);
 check-sibling boolean;
 check-spf (warn | ignore);
 check-srv-cname (fail | warn | ignore);
 check-wildcard boolean;
 clients-per-query integer;
 cookie-algorithm (aes | siphash24);
 cookie-secret string;
 coresize (default | unlimited | sizeval);
 datasize (default | unlimited | sizeval);
 deny-answer-addresses { address_match_element; ... } [
 except-from { string; ... }];
 deny-answer-aliases { string; ... } [except-from { string; ...
 }];
 dialup (notify | notify-passive | passive | refresh | boolean);
 directory quoted_string;
 disable-algorithms string { string;
 ... };
 disable-ds-digests string { string;
 ... };
 disable-empty-zone string;
 dns64 netprefix {
 break-dnssec boolean;
 clients { address_match_element; ... };
 exclude { address_match_element; ... };
 mapped { address_match_element; ... };
 recursive-only boolean;
 suffix ipv6_address;
 };
 dns64-contact string;
 dns64-server string;
 dnskey-sig-validity integer;
 dnsrps-enable boolean;
 dnsrps-options { unspecified-text };
 dnssec-accept-expired boolean;
 dnssec-dnskey-kskonly boolean;
 dnssec-loadkeys-interval integer;
 dnssec-must-be-secure string boolean;
 dnssec-policy string;
 dnssec-secure-to-insecure boolean;
 dnssec-update-mode (maintain | no-resign);
 dnssec-validation (yes | no | auto);
 dnstap { (all | auth | client | forwarder | resolver | update) [
 (query | response)]; ... };
 dnstap-identity (quoted_string | none | hostname);
 dnstap-output (file | unix) quoted_string [size (unlimited |
 size)] [versions (unlimited | integer)] [suffix (
 increment | timestamp)];
 dnstap-version (quoted_string | none);
 dscp integer;
 dual-stack-servers [port integer] { (quoted_string [port
 integer] [dscp integer] | ipv4_address [port
 integer] [dscp integer] | ipv6_address [port
 integer] [dscp integer]); ... };
 dump-file quoted_string;
 edns-udp-size integer;
 empty-contact string;
 empty-server string;
 empty-zones-enable boolean;
 fetch-quota-params integer fixedpoint fixedpoint fixedpoint;
 fetches-per-server integer [(drop | fail)];
 fetches-per-zone integer [(drop | fail)];
 files (default | unlimited | sizeval);
 flush-zones-on-shutdown boolean;
 forward (first | only);
 forwarders [port integer] [dscp integer] { (ipv4_address
 | ipv6_address) [port integer] [dscp integer]; ... };
 fstrm-set-buffer-hint integer;
 fstrm-set-flush-timeout integer;
 fstrm-set-input-queue-size integer;
 fstrm-set-output-notify-threshold integer;
 fstrm-set-output-queue-model (mpsc | spsc);
 fstrm-set-output-queue-size integer;
 fstrm-set-reopen-interval duration;
 geoip-directory (quoted_string | none);
 glue-cache boolean;
 heartbeat-interval integer;
 hostname (quoted_string | none);
 inline-signing boolean;
 interface-interval duration;
 ixfr-from-differences (primary | master | secondary | slave |
 boolean);
 keep-response-order { address_match_element; ... };
 key-directory quoted_string;
 lame-ttl duration;
 listen-on [port integer] [dscp
 integer] {
 address_match_element; ... };
 listen-on-v6 [port integer] [dscp
 integer] {
 address_match_element; ... };
 lmdb-mapsize sizeval;
 lock-file (quoted_string | none);
 managed-keys-directory quoted_string;
 masterfile-format (map | raw | text);
 masterfile-style (full | relative);
 match-mapped-addresses boolean;
 max-cache-size (default | unlimited | sizeval | percentage);
 max-cache-ttl duration;
 max-clients-per-query integer;
 max-ixfr-ratio (unlimited | percentage);
 max-journal-size (default | unlimited | sizeval);
 max-ncache-ttl duration;
 max-records integer;
 max-recursion-depth integer;
 max-recursion-queries integer;
 max-refresh-time integer;
 max-retry-time integer;
 max-rsa-exponent-size integer;
 max-stale-ttl duration;
 max-transfer-idle-in integer;
 max-transfer-idle-out integer;
 max-transfer-time-in integer;
 max-transfer-time-out integer;
 max-udp-size integer;
 max-zone-ttl (unlimited | duration);
 memstatistics boolean;
 memstatistics-file quoted_string;
 message-compression boolean;
 min-cache-ttl duration;
 min-ncache-ttl duration;
 min-refresh-time integer;
 min-retry-time integer;
 minimal-any boolean;
 minimal-responses (no-auth | no-auth-recursive | boolean);
 multi-master boolean;
 new-zones-directory quoted_string;
 no-case-compress { address_match_element; ... };
 nocookie-udp-size integer;
 notify (explicit | master-only | primary-only | boolean);
 notify-delay integer;
 notify-rate integer;
 notify-source (ipv4_address | *) [port (integer | *)] [
 dscp integer];
 notify-source-v6 (ipv6_address | *) [port (integer | *)]
 [dscp integer];
 notify-to-soa boolean;
 nta-lifetime duration;
 nta-recheck duration;
 nxdomain-redirect string;
 pid-file (quoted_string | none);
 port integer;
 preferred-glue string;
 prefetch integer [integer];
 provide-ixfr boolean;
 qname-minimization (strict | relaxed | disabled | off);
 query-source (([address] (ipv4_address | *) [port (
 integer | *)]) | ([[address] (ipv4_address | *)]
 port (integer | *))) [dscp integer];
 query-source-v6 (([address] (ipv6_address | *) [port (
 integer | *)]) | ([[address] (ipv6_address | *)]
 port (integer | *))) [dscp integer];
 querylog boolean;
 random-device (quoted_string | none);
 rate-limit {
 all-per-second integer;
 errors-per-second integer;
 exempt-clients { address_match_element; ... };
 ipv4-prefix-length integer;
 ipv6-prefix-length integer;
 log-only boolean;
 max-table-size integer;
 min-table-size integer;
 nodata-per-second integer;
 nxdomains-per-second integer;
 qps-scale integer;
 referrals-per-second integer;
 responses-per-second integer;
 slip integer;
 window integer;
 };
 recursing-file quoted_string;
 recursion boolean;
 recursive-clients integer;
 request-expire boolean;
 request-ixfr boolean;
 request-nsid boolean;
 require-server-cookie boolean;
 reserved-sockets integer;
 resolver-nonbackoff-tries integer;
 resolver-query-timeout integer;
 resolver-retry-interval integer;
 response-padding { address_match_element; ... } block-size
 integer;
 response-policy { zone string [add-soa boolean] [log
 boolean] [max-policy-ttl duration] [min-update-interval
 duration] [policy (cname | disabled | drop | given | no-op
 | nodata | nxdomain | passthru | tcp-only quoted_string)] [
 recursive-only boolean] [nsip-enable boolean] [
 nsdname-enable boolean]; ... } [add-soa boolean] [
 break-dnssec boolean] [max-policy-ttl duration] [
 min-update-interval duration] [min-ns-dots integer] [
 nsip-wait-recurse boolean] [nsdname-wait-recurse boolean
] [qname-wait-recurse boolean] [recursive-only boolean]
 [nsip-enable boolean] [nsdname-enable boolean] [
 dnsrps-enable boolean] [dnsrps-options { unspecified-text
 }];
 root-delegation-only [exclude { string; ... }];
 root-key-sentinel boolean;
 rrset-order { [class string] [type string] [name
 quoted_string] string string; ... };
 secroots-file quoted_string;
 send-cookie boolean;
 serial-query-rate integer;
 serial-update-method (date | increment | unixtime);
 server-id (quoted_string | none | hostname);
 servfail-ttl duration;
 session-keyalg string;
 session-keyfile (quoted_string | none);
 session-keyname string;
 sig-signing-nodes integer;
 sig-signing-signatures integer;
 sig-signing-type integer;
 sig-validity-interval integer [integer];
 sortlist { address_match_element; ... };
 stacksize (default | unlimited | sizeval);
 stale-answer-enable boolean;
 stale-answer-ttl duration;
 startup-notify-rate integer;
 statistics-file quoted_string;
 synth-from-dnssec boolean;
 tcp-advertised-timeout integer;
 tcp-clients integer;
 tcp-idle-timeout integer;
 tcp-initial-timeout integer;
 tcp-keepalive-timeout integer;
 tcp-listen-queue integer;
 tkey-dhkey quoted_string integer;
 tkey-domain quoted_string;
 tkey-gssapi-credential quoted_string;
 tkey-gssapi-keytab quoted_string;
 transfer-format (many-answers | one-answer);
 transfer-message-size integer;
 transfer-source (ipv4_address | *) [port (integer | *)] [
 dscp integer];
 transfer-source-v6 (ipv6_address | *) [port (integer | *)
] [dscp integer];
 transfers-in integer;
 transfers-out integer;
 transfers-per-ns integer;
 trust-anchor-telemetry boolean; // experimental
 try-tcp-refresh boolean;
 update-check-ksk boolean;
 use-alt-transfer-source boolean;
 use-v4-udp-ports { portrange; ... };
 use-v6-udp-ports { portrange; ... };
 v6-bias integer;
 validate-except { string; ... };
 version (quoted_string | none);
 zero-no-soa-ttl boolean;
 zero-no-soa-ttl-cache boolean;
 zone-statistics (full | terse | none | boolean);
};

PLUGIN

plugin (query) string [{ unspecified-text
 }];

PRIMARIES

primaries string [port integer] [dscp
 integer] { (primaries | ipv4_address
 [port integer] | ipv6_address [port
 integer]) [key string]; ... };

SERVER

server netprefix {
 bogus boolean;
 edns boolean;
 edns-udp-size integer;
 edns-version integer;
 keys server_key;
 max-udp-size integer;
 notify-source (ipv4_address | *) [port (integer | *)] [
 dscp integer];
 notify-source-v6 (ipv6_address | *) [port (integer | *)]
 [dscp integer];
 padding integer;
 provide-ixfr boolean;
 query-source (([address] (ipv4_address | *) [port (
 integer | *)]) | ([[address] (ipv4_address | *)]
 port (integer | *))) [dscp integer];
 query-source-v6 (([address] (ipv6_address | *) [port (
 integer | *)]) | ([[address] (ipv6_address | *)]
 port (integer | *))) [dscp integer];
 request-expire boolean;
 request-ixfr boolean;
 request-nsid boolean;
 send-cookie boolean;
 tcp-keepalive boolean;
 tcp-only boolean;
 transfer-format (many-answers | one-answer);
 transfer-source (ipv4_address | *) [port (integer | *)] [
 dscp integer];
 transfer-source-v6 (ipv6_address | *) [port (integer | *)
] [dscp integer];
 transfers integer;
};

STATISTICS-CHANNELS

statistics-channels {
 inet (ipv4_address | ipv6_address |
 *) [port (integer | *)] [
 allow { address_match_element; ...
 }];
};

TRUST-ANCHORS

trust-anchors { string (static-key |
 initial-key | static-ds | initial-ds)
 integer integer integer
 quoted_string; ... };

TRUSTED-KEYS

Deprecated - see DNSSEC-KEYS.

trusted-keys { string integer
 integer integer
 quoted_string; ... };, deprecated

VIEW

view string [class] {
 allow-new-zones boolean;
 allow-notify { address_match_element; ... };
 allow-query { address_match_element; ... };
 allow-query-cache { address_match_element; ... };
 allow-query-cache-on { address_match_element; ... };
 allow-query-on { address_match_element; ... };
 allow-recursion { address_match_element; ... };
 allow-recursion-on { address_match_element; ... };
 allow-transfer { address_match_element; ... };
 allow-update { address_match_element; ... };
 allow-update-forwarding { address_match_element; ... };
 also-notify [port integer] [dscp integer] { (primaries |
 ipv4_address [port integer] | ipv6_address [port
 integer]) [key string]; ... };
 alt-transfer-source (ipv4_address | *) [port (integer | *)
] [dscp integer];
 alt-transfer-source-v6 (ipv6_address | *) [port (integer |
 *)] [dscp integer];
 attach-cache string;
 auth-nxdomain boolean; // default changed
 auto-dnssec (allow | maintain | off);
 cache-file quoted_string;
 catalog-zones { zone string [default-masters [port integer]
 [dscp integer] { (primaries | ipv4_address [port
 integer] | ipv6_address [port integer]) [key
 string]; ... }] [zone-directory quoted_string] [
 in-memory boolean] [min-update-interval duration]; ... };
 check-dup-records (fail | warn | ignore);
 check-integrity boolean;
 check-mx (fail | warn | ignore);
 check-mx-cname (fail | warn | ignore);
 check-names (primary | master |
 secondary | slave | response) (
 fail | warn | ignore);
 check-sibling boolean;
 check-spf (warn | ignore);
 check-srv-cname (fail | warn | ignore);
 check-wildcard boolean;
 clients-per-query integer;
 deny-answer-addresses { address_match_element; ... } [
 except-from { string; ... }];
 deny-answer-aliases { string; ... } [except-from { string; ...
 }];
 dialup (notify | notify-passive | passive | refresh | boolean);
 disable-algorithms string { string;
 ... };
 disable-ds-digests string { string;
 ... };
 disable-empty-zone string;
 dlz string {
 database string;
 search boolean;
 };
 dns64 netprefix {
 break-dnssec boolean;
 clients { address_match_element; ... };
 exclude { address_match_element; ... };
 mapped { address_match_element; ... };
 recursive-only boolean;
 suffix ipv6_address;
 };
 dns64-contact string;
 dns64-server string;
 dnskey-sig-validity integer;
 dnsrps-enable boolean;
 dnsrps-options { unspecified-text };
 dnssec-accept-expired boolean;
 dnssec-dnskey-kskonly boolean;
 dnssec-loadkeys-interval integer;
 dnssec-must-be-secure string boolean;
 dnssec-policy string;
 dnssec-secure-to-insecure boolean;
 dnssec-update-mode (maintain | no-resign);
 dnssec-validation (yes | no | auto);
 dnstap { (all | auth | client | forwarder | resolver | update) [
 (query | response)]; ... };
 dual-stack-servers [port integer] { (quoted_string [port
 integer] [dscp integer] | ipv4_address [port
 integer] [dscp integer] | ipv6_address [port
 integer] [dscp integer]); ... };
 dyndb string quoted_string {
 unspecified-text };
 edns-udp-size integer;
 empty-contact string;
 empty-server string;
 empty-zones-enable boolean;
 fetch-quota-params integer fixedpoint fixedpoint fixedpoint;
 fetches-per-server integer [(drop | fail)];
 fetches-per-zone integer [(drop | fail)];
 forward (first | only);
 forwarders [port integer] [dscp integer] { (ipv4_address
 | ipv6_address) [port integer] [dscp integer]; ... };
 glue-cache boolean;
 inline-signing boolean;
 ixfr-from-differences (primary | master | secondary | slave |
 boolean);
 key string {
 algorithm string;
 secret string;
 };
 key-directory quoted_string;
 lame-ttl duration;
 lmdb-mapsize sizeval;
 managed-keys { string (
 static-key | initial-key
 | static-ds | initial-ds
) integer integer
 integer
 quoted_string; ... };, deprecated
 masterfile-format (map | raw | text);
 masterfile-style (full | relative);
 match-clients { address_match_element; ... };
 match-destinations { address_match_element; ... };
 match-recursive-only boolean;
 max-cache-size (default | unlimited | sizeval | percentage);
 max-cache-ttl duration;
 max-clients-per-query integer;
 max-ixfr-ratio (unlimited | percentage);
 max-journal-size (default | unlimited | sizeval);
 max-ncache-ttl duration;
 max-records integer;
 max-recursion-depth integer;
 max-recursion-queries integer;
 max-refresh-time integer;
 max-retry-time integer;
 max-stale-ttl duration;
 max-transfer-idle-in integer;
 max-transfer-idle-out integer;
 max-transfer-time-in integer;
 max-transfer-time-out integer;
 max-udp-size integer;
 max-zone-ttl (unlimited | duration);
 message-compression boolean;
 min-cache-ttl duration;
 min-ncache-ttl duration;
 min-refresh-time integer;
 min-retry-time integer;
 minimal-any boolean;
 minimal-responses (no-auth | no-auth-recursive | boolean);
 multi-master boolean;
 new-zones-directory quoted_string;
 no-case-compress { address_match_element; ... };
 nocookie-udp-size integer;
 notify (explicit | master-only | primary-only | boolean);
 notify-delay integer;
 notify-source (ipv4_address | *) [port (integer | *)] [
 dscp integer];
 notify-source-v6 (ipv6_address | *) [port (integer | *)]
 [dscp integer];
 notify-to-soa boolean;
 nta-lifetime duration;
 nta-recheck duration;
 nxdomain-redirect string;
 plugin (query) string [{
 unspecified-text }];
 preferred-glue string;
 prefetch integer [integer];
 provide-ixfr boolean;
 qname-minimization (strict | relaxed | disabled | off);
 query-source (([address] (ipv4_address | *) [port (
 integer | *)]) | ([[address] (ipv4_address | *)]
 port (integer | *))) [dscp integer];
 query-source-v6 (([address] (ipv6_address | *) [port (
 integer | *)]) | ([[address] (ipv6_address | *)]
 port (integer | *))) [dscp integer];
 rate-limit {
 all-per-second integer;
 errors-per-second integer;
 exempt-clients { address_match_element; ... };
 ipv4-prefix-length integer;
 ipv6-prefix-length integer;
 log-only boolean;
 max-table-size integer;
 min-table-size integer;
 nodata-per-second integer;
 nxdomains-per-second integer;
 qps-scale integer;
 referrals-per-second integer;
 responses-per-second integer;
 slip integer;
 window integer;
 };
 recursion boolean;
 request-expire boolean;
 request-ixfr boolean;
 request-nsid boolean;
 require-server-cookie boolean;
 resolver-nonbackoff-tries integer;
 resolver-query-timeout integer;
 resolver-retry-interval integer;
 response-padding { address_match_element; ... } block-size
 integer;
 response-policy { zone string [add-soa boolean] [log
 boolean] [max-policy-ttl duration] [min-update-interval
 duration] [policy (cname | disabled | drop | given | no-op
 | nodata | nxdomain | passthru | tcp-only quoted_string)] [
 recursive-only boolean] [nsip-enable boolean] [
 nsdname-enable boolean]; ... } [add-soa boolean] [
 break-dnssec boolean] [max-policy-ttl duration] [
 min-update-interval duration] [min-ns-dots integer] [
 nsip-wait-recurse boolean] [nsdname-wait-recurse boolean
] [qname-wait-recurse boolean] [recursive-only boolean]
 [nsip-enable boolean] [nsdname-enable boolean] [
 dnsrps-enable boolean] [dnsrps-options { unspecified-text
 }];
 root-delegation-only [exclude { string; ... }];
 root-key-sentinel boolean;
 rrset-order { [class string] [type string] [name
 quoted_string] string string; ... };
 send-cookie boolean;
 serial-update-method (date | increment | unixtime);
 server netprefix {
 bogus boolean;
 edns boolean;
 edns-udp-size integer;
 edns-version integer;
 keys server_key;
 max-udp-size integer;
 notify-source (ipv4_address | *) [port (integer | *
)] [dscp integer];
 notify-source-v6 (ipv6_address | *) [port (integer
 | *)] [dscp integer];
 padding integer;
 provide-ixfr boolean;
 query-source (([address] (ipv4_address | *) [port
 (integer | *)]) | ([[address] (
 ipv4_address | *)] port (integer | *))) [
 dscp integer];
 query-source-v6 (([address] (ipv6_address | *) [
 port (integer | *)]) | ([[address] (
 ipv6_address | *)] port (integer | *))) [
 dscp integer];
 request-expire boolean;
 request-ixfr boolean;
 request-nsid boolean;
 send-cookie boolean;
 tcp-keepalive boolean;
 tcp-only boolean;
 transfer-format (many-answers | one-answer);
 transfer-source (ipv4_address | *) [port (integer |
 *)] [dscp integer];
 transfer-source-v6 (ipv6_address | *) [port (
 integer | *)] [dscp integer];
 transfers integer;
 };
 servfail-ttl duration;
 sig-signing-nodes integer;
 sig-signing-signatures integer;
 sig-signing-type integer;
 sig-validity-interval integer [integer];
 sortlist { address_match_element; ... };
 stale-answer-enable boolean;
 stale-answer-ttl duration;
 synth-from-dnssec boolean;
 transfer-format (many-answers | one-answer);
 transfer-source (ipv4_address | *) [port (integer | *)] [
 dscp integer];
 transfer-source-v6 (ipv6_address | *) [port (integer | *)
] [dscp integer];
 trust-anchor-telemetry boolean; // experimental
 trust-anchors { string (static-key |
 initial-key | static-ds | initial-ds
) integer integer integer
 quoted_string; ... };
 trusted-keys { string
 integer integer
 integer
 quoted_string; ... };, deprecated
 try-tcp-refresh boolean;
 update-check-ksk boolean;
 use-alt-transfer-source boolean;
 v6-bias integer;
 validate-except { string; ... };
 zero-no-soa-ttl boolean;
 zero-no-soa-ttl-cache boolean;
 zone string [class] {
 allow-notify { address_match_element; ... };
 allow-query { address_match_element; ... };
 allow-query-on { address_match_element; ... };
 allow-transfer { address_match_element; ... };
 allow-update { address_match_element; ... };
 allow-update-forwarding { address_match_element; ... };
 also-notify [port integer] [dscp integer] { (
 primaries | ipv4_address [port integer] |
 ipv6_address [port integer]) [key string];
 ... };
 alt-transfer-source (ipv4_address | *) [port (
 integer | *)] [dscp integer];
 alt-transfer-source-v6 (ipv6_address | *) [port (
 integer | *)] [dscp integer];
 auto-dnssec (allow | maintain | off);
 check-dup-records (fail | warn | ignore);
 check-integrity boolean;
 check-mx (fail | warn | ignore);
 check-mx-cname (fail | warn | ignore);
 check-names (fail | warn | ignore);
 check-sibling boolean;
 check-spf (warn | ignore);
 check-srv-cname (fail | warn | ignore);
 check-wildcard boolean;
 database string;
 delegation-only boolean;
 dialup (notify | notify-passive | passive | refresh |
 boolean);
 dlz string;
 dnskey-sig-validity integer;
 dnssec-dnskey-kskonly boolean;
 dnssec-loadkeys-interval integer;
 dnssec-policy string;
 dnssec-secure-to-insecure boolean;
 dnssec-update-mode (maintain | no-resign);
 file quoted_string;
 forward (first | only);
 forwarders [port integer] [dscp integer] { (
 ipv4_address | ipv6_address) [port integer] [
 dscp integer]; ... };
 in-view string;
 inline-signing boolean;
 ixfr-from-differences boolean;
 journal quoted_string;
 key-directory quoted_string;
 masterfile-format (map | raw | text);
 masterfile-style (full | relative);
 masters [port integer] [dscp integer] { (
 primaries | ipv4_address [port integer] |
 ipv6_address [port integer]) [key string];
 ... };
 max-ixfr-ratio (unlimited | percentage);
 max-journal-size (default | unlimited | sizeval);
 max-records integer;
 max-refresh-time integer;
 max-retry-time integer;
 max-transfer-idle-in integer;
 max-transfer-idle-out integer;
 max-transfer-time-in integer;
 max-transfer-time-out integer;
 max-zone-ttl (unlimited | duration);
 min-refresh-time integer;
 min-retry-time integer;
 multi-master boolean;
 notify (explicit | master-only | primary-only | boolean);
 notify-delay integer;
 notify-source (ipv4_address | *) [port (integer | *
)] [dscp integer];
 notify-source-v6 (ipv6_address | *) [port (integer
 | *)] [dscp integer];
 notify-to-soa boolean;
 primaries [port integer] [dscp integer] { (
 primaries | ipv4_address [port integer] |
 ipv6_address [port integer]) [key string];
 ... };
 request-expire boolean;
 request-ixfr boolean;
 serial-update-method (date | increment | unixtime);
 server-addresses { (ipv4_address | ipv6_address); ... };
 server-names { string; ... };
 sig-signing-nodes integer;
 sig-signing-signatures integer;
 sig-signing-type integer;
 sig-validity-interval integer [integer];
 transfer-source (ipv4_address | *) [port (integer |
 *)] [dscp integer];
 transfer-source-v6 (ipv6_address | *) [port (
 integer | *)] [dscp integer];
 try-tcp-refresh boolean;
 type (primary | master | secondary | slave | mirror |
 delegation-only | forward | hint | redirect |
 static-stub | stub);
 update-check-ksk boolean;
 update-policy (local | { (deny | grant) string (
 6to4-self | external | krb5-self | krb5-selfsub |
 krb5-subdomain | ms-self | ms-selfsub | ms-subdomain |
 name | self | selfsub | selfwild | subdomain | tcp-self
 | wildcard | zonesub) [string] rrtypelist; ... };
 use-alt-transfer-source boolean;
 zero-no-soa-ttl boolean;
 zone-statistics (full | terse | none | boolean);
 };
 zone-statistics (full | terse | none | boolean);
};

ZONE

zone string [class] {
 allow-notify { address_match_element; ... };
 allow-query { address_match_element; ... };
 allow-query-on { address_match_element; ... };
 allow-transfer { address_match_element; ... };
 allow-update { address_match_element; ... };
 allow-update-forwarding { address_match_element; ... };
 also-notify [port integer] [dscp integer] { (primaries |
 ipv4_address [port integer] | ipv6_address [port
 integer]) [key string]; ... };
 alt-transfer-source (ipv4_address | *) [port (integer | *)
] [dscp integer];
 alt-transfer-source-v6 (ipv6_address | *) [port (integer |
 *)] [dscp integer];
 auto-dnssec (allow | maintain | off);
 check-dup-records (fail | warn | ignore);
 check-integrity boolean;
 check-mx (fail | warn | ignore);
 check-mx-cname (fail | warn | ignore);
 check-names (fail | warn | ignore);
 check-sibling boolean;
 check-spf (warn | ignore);
 check-srv-cname (fail | warn | ignore);
 check-wildcard boolean;
 database string;
 delegation-only boolean;
 dialup (notify | notify-passive | passive | refresh | boolean);
 dlz string;
 dnskey-sig-validity integer;
 dnssec-dnskey-kskonly boolean;
 dnssec-loadkeys-interval integer;
 dnssec-policy string;
 dnssec-secure-to-insecure boolean;
 dnssec-update-mode (maintain | no-resign);
 file quoted_string;
 forward (first | only);
 forwarders [port integer] [dscp integer] { (ipv4_address
 | ipv6_address) [port integer] [dscp integer]; ... };
 in-view string;
 inline-signing boolean;
 ixfr-from-differences boolean;
 journal quoted_string;
 key-directory quoted_string;
 masterfile-format (map | raw | text);
 masterfile-style (full | relative);
 masters [port integer] [dscp integer] { (primaries |
 ipv4_address [port integer] | ipv6_address [port
 integer]) [key string]; ... };
 max-ixfr-ratio (unlimited | percentage);
 max-journal-size (default | unlimited | sizeval);
 max-records integer;
 max-refresh-time integer;
 max-retry-time integer;
 max-transfer-idle-in integer;
 max-transfer-idle-out integer;
 max-transfer-time-in integer;
 max-transfer-time-out integer;
 max-zone-ttl (unlimited | duration);
 min-refresh-time integer;
 min-retry-time integer;
 multi-master boolean;
 notify (explicit | master-only | primary-only | boolean);
 notify-delay integer;
 notify-source (ipv4_address | *) [port (integer | *)] [
 dscp integer];
 notify-source-v6 (ipv6_address | *) [port (integer | *)]
 [dscp integer];
 notify-to-soa boolean;
 primaries [port integer] [dscp integer] { (primaries |
 ipv4_address [port integer] | ipv6_address [port
 integer]) [key string]; ... };
 request-expire boolean;
 request-ixfr boolean;
 serial-update-method (date | increment | unixtime);
 server-addresses { (ipv4_address | ipv6_address); ... };
 server-names { string; ... };
 sig-signing-nodes integer;
 sig-signing-signatures integer;
 sig-signing-type integer;
 sig-validity-interval integer [integer];
 transfer-source (ipv4_address | *) [port (integer | *)] [
 dscp integer];
 transfer-source-v6 (ipv6_address | *) [port (integer | *)
] [dscp integer];
 try-tcp-refresh boolean;
 type (primary | master | secondary | slave | mirror |
 delegation-only | forward | hint | redirect | static-stub |
 stub);
 update-check-ksk boolean;
 update-policy (local | { (deny | grant) string (6to4-self |
 external | krb5-self | krb5-selfsub | krb5-subdomain | ms-self
 | ms-selfsub | ms-subdomain | name | self | selfsub | selfwild
 | subdomain | tcp-self | wildcard | zonesub) [string]
 rrtypelist; ... };
 use-alt-transfer-source boolean;
 zero-no-soa-ttl boolean;
 zone-statistics (full | terse | none | boolean);
};

Files

/etc/named.conf

See Also

ddns-confgen(8), named(8), named-checkconf(8), rndc(8), rndc-confgen(8), BIND 9 Administrator Reference Manual.

named - Internet domain name server

Synopsis

named [[-4] | [-6]] [-c config-file] [-d debug-level] [-D string] [-E engine-name] [-f] [-g] [-L logfile] [-M option] [-m flag] [-n #cpus] [-p port] [-s] [-S #max-socks] [-t directory] [-U #listeners] [-u user] [-v] [-V] [-X lock-file] [-x cache-file]

Description

named is a Domain Name System (DNS) server, part of the BIND 9
distribution from ISC. For more information on the DNS, see RFC 1033 [https://tools.ietf.org/html/rfc1033.html],
RFC 1034 [https://tools.ietf.org/html/rfc1034.html], and RFC 1035 [https://tools.ietf.org/html/rfc1035.html].

When invoked without arguments, named reads the default
configuration file /etc/named.conf, reads any initial data, and
listens for queries.

Options

	-4

	This option tells named to use only IPv4, even if the host machine is capable of IPv6. -4 and
-6 are mutually exclusive.

	-6

	This option tells named to use only IPv6, even if the host machine is capable of IPv4. -4 and
-6 are mutually exclusive.

	-c config-file

	This option tells named to use config-file as its configuration file instead of the default,
/etc/named.conf. To ensure that the configuration file
can be reloaded after the server has changed its working directory
due to to a possible directory option in the configuration file,
config-file should be an absolute pathname.

	-d debug-level

	This option sets the daemon’s debug level to debug-level. Debugging traces from
named become more verbose as the debug level increases.

	-D string

	This option specifies a string that is used to identify a instance of named
in a process listing. The contents of string are not examined.

	-E engine-name

	When applicable, this option specifies the hardware to use for cryptographic
operations, such as a secure key store used for signing.

When BIND is built with OpenSSL PKCS#11 support, this defaults to the
string pkcs11, which identifies an OpenSSL engine that can drive a
cryptographic accelerator or hardware service module. When BIND is
built with native PKCS#11 cryptography (--enable-native-pkcs11), it
defaults to the path of the PKCS#11 provider library specified via
--with-pkcs11.

	-f

	This option runs the server in the foreground (i.e., do not daemonize).

	-g

	This option runs the server in the foreground and forces all logging to stderr.

	-L logfile

	This option sets the log to the file logfile by default, instead of the system log.

	-M option

	This option sets the default memory context options. If set to external,
the internal memory manager is bypassed in favor of
system-provided memory allocation functions. If set to fill, blocks
of memory are filled with tag values when allocated or freed, to
assist debugging of memory problems. nofill disables this behavior,
and is the default unless named has been compiled with developer
options.

	-m flag

	This option turns on memory usage debugging flags. Possible flags are usage,
trace, record, size, and mctx. These correspond to the
ISC_MEM_DEBUGXXXX flags described in <isc/mem.h>.

	-n #cpus

	This option creates #cpus worker threads to take advantage of multiple CPUs. If
not specified, named tries to determine the number of CPUs
present and creates one thread per CPU. If it is unable to determine
the number of CPUs, a single worker thread is created.

	-p port

	This option listens for queries on port. If not specified, the default is
port 53.

	-s

	This option writes memory usage statistics to stdout on exit.

Note

This option is mainly of interest to BIND 9 developers and may be
removed or changed in a future release.

	-S #max-socks

	This option allows named to use up to #max-socks sockets. The default value is
21000 on systems built with default configuration options, and 4096
on systems built with configure --with-tuning=small.

Warning

This option should be unnecessary for the vast majority of users.
The use of this option could even be harmful, because the specified
value may exceed the limitation of the underlying system API. It
is therefore set only when the default configuration causes
exhaustion of file descriptors and the operational environment is
known to support the specified number of sockets. Note also that
the actual maximum number is normally slightly fewer than the
specified value, because named reserves some file descriptors
for its internal use.

	-t directory

	This option tells named to chroot to directory after processing the command-line arguments, but
before reading the configuration file.

Warning

This option should be used in conjunction with the -u option,
as chrooting a process running as root doesn’t enhance security on
most systems; the way chroot is defined allows a process
with root privileges to escape a chroot jail.

	-U #listeners

	This option tells named the number of #listeners worker threads to listen on, for incoming UDP packets on
each address. If not specified, named calculates a default
value based on the number of detected CPUs: 1 for 1 CPU, and the
number of detected CPUs minus one for machines with more than 1 CPU.
This cannot be increased to a value higher than the number of CPUs.
If -n has been set to a higher value than the number of detected
CPUs, then -U may be increased as high as that value, but no
higher. On Windows, the number of UDP listeners is hardwired to 1 and
this option has no effect.

	-u user

	This option sets the setuid to user after completing privileged operations, such as
creating sockets that listen on privileged ports.

Note

On Linux, named uses the kernel’s capability mechanism to drop
all root privileges except the ability to bind to a
privileged port and set process resource limits. Unfortunately,
this means that the -u option only works when named is run
on kernel 2.2.18 or later, or kernel 2.3.99-pre3 or later, since
previous kernels did not allow privileges to be retained after
setuid.

	-v

	This option reports the version number and exits.

	-V

	This option reports the version number and build options, and exits.

	-X lock-file

	This option acquires a lock on the specified file at runtime; this helps to
prevent duplicate named instances from running simultaneously.
Use of this option overrides the lock-file option in
named.conf. If set to none, the lock file check is disabled.

	-x cache-file

	This option loads data from cache-file into the cache of the default view.

Warning

This option must not be used in normal operations. It is only of interest to BIND 9
developers and may be removed or changed in a future release.

Signals

In routine operation, signals should not be used to control the
nameserver; rndc should be used instead.

	SIGHUP

	This signal forces a reload of the server.

	SIGINT, SIGTERM

	These signals shut down the server.

The result of sending any other signals to the server is undefined.

Configuration

The named configuration file is too complex to describe in detail
here. A complete description is provided in the BIND 9 Administrator
Reference Manual.

named inherits the umask (file creation mode mask) from the
parent process. If files created by named, such as journal files,
need to have custom permissions, the umask should be set explicitly
in the script used to start the named process.

Files

	/etc/named.conf

	The default configuration file.

	/var/run/named/named.pid

	The default process-id file.

See Also

RFC 1033 [https://tools.ietf.org/html/rfc1033.html], RFC 1034 [https://tools.ietf.org/html/rfc1034.html], RFC 1035 [https://tools.ietf.org/html/rfc1035.html], named-checkconf(8), named-checkzone(8), rndc(8), :manpage:`named.conf(5), BIND 9 Administrator Reference Manual.

nsec3hash - generate NSEC3 hash

Synopsis

nsec3hash {salt} {algorithm} {iterations} {domain}

nsec3hash -r {algorithm} {flags} {iterations} {salt} {domain}

Description

nsec3hash generates an NSEC3 hash based on a set of NSEC3
parameters. This can be used to check the validity of NSEC3 records in a
signed zone.

If this command is invoked as nsec3hash -r, it takes arguments in
order, matching the first four fields of an NSEC3 record followed by the
domain name: algorithm, flags, iterations, salt, domain. This makes it
convenient to copy and paste a portion of an NSEC3 or NSEC3PARAM record
into a command line to confirm the correctness of an NSEC3 hash.

Arguments

	salt

	This is the salt provided to the hash algorithm.

	algorithm

	This is a number indicating the hash algorithm. Currently the only supported
hash algorithm for NSEC3 is SHA-1, which is indicated by the number
1; consequently “1” is the only useful value for this argument.

	flags

	This is provided for compatibility with NSEC3 record presentation format, but
is ignored since the flags do not affect the hash.

	iterations

	This is the number of additional times the hash should be performed.

	domain

	This is the domain name to be hashed.

See Also

BIND 9 Administrator Reference Manual, RFC 5155 [https://tools.ietf.org/html/rfc5155.html].

nslookup - query Internet name servers interactively

Synopsis

nslookup [-option] [name | -] [server]

Description

nslookup is a program to query Internet domain name servers.
nslookup has two modes: interactive and non-interactive. Interactive
mode allows the user to query name servers for information about various
hosts and domains or to print a list of hosts in a domain.
Non-interactive mode prints just the name and requested
information for a host or domain.

Arguments

Interactive mode is entered in the following cases:

	when no arguments are given (the default name server is used);

	when the first argument is a hyphen (-) and the second argument is
the host name or Internet address of a name server.

Non-interactive mode is used when the name or Internet address of the
host to be looked up is given as the first argument. The optional second
argument specifies the host name or address of a name server.

Options can also be specified on the command line if they precede the
arguments and are prefixed with a hyphen. For example, to change the
default query type to host information, with an initial timeout of 10
seconds, type:

nslookup -query=hinfo -timeout=10

The -version option causes nslookup to print the version number
and immediately exit.

Interactive Commands

	host [server]

	This command looks up information for host using the current default server or
using server, if specified. If host is an Internet address and the
query type is A or PTR, the name of the host is returned. If host is
a name and does not have a trailing period (.), the search list is used
to qualify the name.

To look up a host not in the current domain, append a period to the
name.

	server domain | lserver domain

	These commands change the default server to domain; lserver uses the initial
server to look up information about domain, while server uses the
current default server. If an authoritative answer cannot be found,
the names of servers that might have the answer are returned.

	root

	This command is not implemented.

	finger

	This command is not implemented.

	ls

	This command is not implemented.

	view

	This command is not implemented.

	help

	This command is not implemented.

	?

	This command is not implemented.

	exit

	This command exits the program.

	set keyword[=value]

	This command is used to change state information that affects the
lookups. Valid keywords are:

	all

	This keyword prints the current values of the frequently used options to
set. Information about the current default server and host is
also printed.

	class=value

	This keyword changes the query class to one of:

	IN

	the Internet class

	CH

	the Chaos class

	HS

	the Hesiod class

	ANY

	wildcard

The class specifies the protocol group of the information. The default
is IN; the abbreviation for this keyword is cl.

	nodebug

	This keyword turns on or off the display of the full response packet, and any
intermediate response packets, when searching. The default for this keyword is
nodebug; the abbreviation for this keyword is [no]deb.

	nod2

	This keyword turns debugging mode on or off. This displays more about what
nslookup is doing. The default is nod2.

	domain=name

	This keyword sets the search list to name.

	nosearch

	If the lookup request contains at least one period, but does not end
with a trailing period, this keyword appends the domain names in the domain
search list to the request until an answer is received. The default is search.

	port=value

	This keyword changes the default TCP/UDP name server port to value from
its default, port 53. The abbreviation for this keyword is po.

	querytype=value | type=value

	This keyword changes the type of the information query to value. The
defaults are A and then AAAA; the abbreviations for these keywords are
q and ty.

Please note that it is only possible to specify one query type. Only the default
behavior looks up both when an alternative is not specified.

	norecurse

	This keyword tells the name server to query other servers if it does not have
the information. The default is recurse; the abbreviation for this
keyword is [no]rec.

	ndots=number

	This keyword sets the number of dots (label separators) in a domain that
disables searching. Absolute names always stop searching.

	retry=number

	This keyword sets the number of retries to number.

	timeout=number

	This keyword changes the initial timeout interval to wait for a reply to
number, in seconds.

	novc

	This keyword indicates that a virtual circuit should always be used when sending requests to the server.
novc is the default.

	nofail

	This keyword tries the next nameserver if a nameserver responds with SERVFAIL or
a referral (nofail), or terminates the query (fail) on such a response. The
default is nofail.

Return Values

nslookup returns with an exit status of 1 if any query failed, and 0
otherwise.

IDN Support

If nslookup has been built with IDN (internationalized domain name)
support, it can accept and display non-ASCII domain names. nslookup
appropriately converts character encoding of a domain name before sending
a request to a DNS server or displaying a reply from the server.
To turn off IDN support, define the IDN_DISABLE
environment variable. IDN support is disabled if the variable is set
when nslookup runs, or when the standard output is not a tty.

Files

/etc/resolv.conf

See Also

dig(1), host(1), named(8).

nsupdate - dynamic DNS update utility

Synopsis

nsupdate [-d] [-D] [-i] [-L level] [[-g] | [-o] | [-l] | [-y [hmac:]keyname:secret] | [-k keyfile]] [-t timeout] [-u udptimeout] [-r udpretries] [-v] [-T] [-P] [-V] [[-4] | [-6]] [filename]

Description

nsupdate is used to submit Dynamic DNS Update requests, as defined in
RFC 2136 [https://tools.ietf.org/html/rfc2136.html], to a name server. This allows resource records to be added or
removed from a zone without manually editing the zone file. A single
update request can contain requests to add or remove more than one
resource record.

Zones that are under dynamic control via nsupdate or a DHCP server
should not be edited by hand. Manual edits could conflict with dynamic
updates and cause data to be lost.

The resource records that are dynamically added or removed with
nsupdate must be in the same zone. Requests are sent to the
zone’s primary server, which is identified by the MNAME field of the
zone’s SOA record.

Transaction signatures can be used to authenticate the Dynamic DNS
updates. These use the TSIG resource record type described in RFC 2845 [https://tools.ietf.org/html/rfc2845.html],
the SIG(0) record described in RFC 2535 [https://tools.ietf.org/html/rfc2535.html] and RFC 2931 [https://tools.ietf.org/html/rfc2931.html], or GSS-TSIG as
described in RFC 3645 [https://tools.ietf.org/html/rfc3645.html].

TSIG relies on a shared secret that should only be known to nsupdate
and the name server. For instance, suitable key and server
statements are added to /etc/named.conf so that the name server
can associate the appropriate secret key and algorithm with the IP
address of the client application that is using TSIG
authentication. ddns-confgen can generate suitable
configuration fragments. nsupdate uses the -y or -k options
to provide the TSIG shared secret; these options are mutually exclusive.

SIG(0) uses public key cryptography. To use a SIG(0) key, the public key
must be stored in a KEY record in a zone served by the name server.

GSS-TSIG uses Kerberos credentials. Standard GSS-TSIG mode is switched
on with the -g flag. A non-standards-compliant variant of GSS-TSIG
used by Windows 2000 can be switched on with the -o flag.

Options

	-4

	This option sets use of IPv4 only.

	-6

	This option sets use of IPv6 only.

	-d

	This option sets debug mode, which provides tracing information about the update
requests that are made and the replies received from the name server.

	-D

	This option sets extra debug mode.

	-i

	This option forces interactive mode, even when standard input is not a terminal.

	-k keyfile

	This option indicates the file containing the TSIG authentication key. Keyfiles may be in
two formats: a single file containing a named.conf-format key
statement, which may be generated automatically by ddns-confgen;
or a pair of files whose names are of the format
K{name}.+157.+{random}.key and
K{name}.+157.+{random}.private, which can be generated by
dnssec-keygen. The -k option can also be used to specify a SIG(0)
key used to authenticate Dynamic DNS update requests. In this case,
the key specified is not an HMAC-MD5 key.

	-l

	This option sets local-host only mode, which sets the server address to localhost
(disabling the server so that the server address cannot be
overridden). Connections to the local server use a TSIG key
found in /var/run/named/session.key, which is automatically
generated by named if any local primary zone has set
update-policy to local. The location of this key file can be
overridden with the -k option.

	-L level

	This option sets the logging debug level. If zero, logging is disabled.

	-p port

	This option sets the port to use for connections to a name server. The default is
53.

	-P

	This option prints the list of private BIND-specific resource record types whose
format is understood by nsupdate. See also the -T option.

	-r udpretries

	This option sets the number of UDP retries. The default is 3. If zero, only one update
request is made.

	-t timeout

	This option sets the maximum time an update request can take before it is aborted. The
default is 300 seconds. If zero, the timeout is disabled.

	-T

	This option prints the list of IANA standard resource record types whose format is
understood by nsupdate. nsupdate exits after the lists
are printed. The -T option can be combined with the -P
option.

Other types can be entered using TYPEXXXXX where XXXXX is the
decimal value of the type with no leading zeros. The rdata, if
present, is parsed using the UNKNOWN rdata format, (<backslash>
<hash> <space> <length> <space> <hexstring>).

	-u udptimeout

	This option sets the UDP retry interval. The default is 3 seconds. If zero, the
interval is computed from the timeout interval and number of UDP
retries.

	-v

	This option specifies that TCP should be used even for small update requests. By default, nsupdate uses
UDP to send update requests to the name server unless they are too
large to fit in a UDP request, in which case TCP is used. TCP may
be preferable when a batch of update requests is made.

	-V

	This option prints the version number and exits.

	-y [hmac:]keyname:secret

	This option sets the literal TSIG authentication key. keyname is the name of the key,
and secret is the base64 encoded shared secret. hmac is the
name of the key algorithm; valid choices are hmac-md5,
hmac-sha1, hmac-sha224, hmac-sha256, hmac-sha384, or
hmac-sha512. If hmac is not specified, the default is
hmac-md5, or if MD5 was disabled, hmac-sha256.

NOTE: Use of the -y option is discouraged because the shared
secret is supplied as a command-line argument in clear text. This may
be visible in the output from ps1 or in a history file maintained by
the user’s shell.

Input Format

nsupdate reads input from filename or standard input. Each
command is supplied on exactly one line of input. Some commands are for
administrative purposes; others are either update instructions or
prerequisite checks on the contents of the zone. These checks set
conditions that some name or set of resource records (RRset) either
exists or is absent from the zone. These conditions must be met if the
entire update request is to succeed. Updates are rejected if the
tests for the prerequisite conditions fail.

Every update request consists of zero or more prerequisites and zero or
more updates. This allows a suitably authenticated update request to
proceed if some specified resource records are either present or missing from
the zone. A blank input line (or the send command) causes the
accumulated commands to be sent as one Dynamic DNS update request to the
name server.

The command formats and their meanings are as follows:

	server servername port

	This command sends all dynamic update requests to the name server servername.
When no server statement is provided, nsupdate sends updates
to the primary server of the correct zone. The MNAME field of that
zone’s SOA record identify the primary server for that zone.
port is the port number on servername where the dynamic
update requests are sent. If no port number is specified, the default
DNS port number of 53 is used.

	local address port

	This command sends all dynamic update requests using the local address. When
no local statement is provided, nsupdate sends updates using
an address and port chosen by the system. port can also
be used to force requests to come from a specific port. If no port number
is specified, the system assigns one.

	zone zonename

	This command specifies that all updates are to be made to the zone zonename.
If no zone statement is provided, nsupdate attempts to
determine the correct zone to update based on the rest of the input.

	class classname

	This command specifies the default class. If no class is specified, the default
class is IN.

	ttl seconds

	This command specifies the default time-to-live, in seconds, for records to be added. The value
none clears the default TTL.

	key hmac:keyname secret

	This command specifies that all updates are to be TSIG-signed using the
keyname-secret pair. If hmac is specified, it sets
the signing algorithm in use. The default is hmac-md5; if MD5
was disabled, the default is hmac-sha256. The key command overrides any key
specified on the command line via -y or -k.

	gsstsig

	This command uses GSS-TSIG to sign the updates. This is equivalent to specifying
-g on the command line.

	oldgsstsig

	This command uses the Windows 2000 version of GSS-TSIG to sign the updates. This is
equivalent to specifying -o on the command line.

	realm [realm_name]

	When using GSS-TSIG, this command specifies the use of realm_name rather than the default realm
in krb5.conf. If no realm is specified, the saved realm is
cleared.

	check-names [yes_or_no]

	This command turns on or off check-names processing on records to be added.
Check-names has no effect on prerequisites or records to be deleted.
By default check-names processing is on. If check-names processing
fails, the record is not added to the UPDATE message.

	prereq nxdomain domain-name

	This command requires that no resource record of any type exist with the name
domain-name.

	prereq yxdomain domain-name

	This command requires that domain-name exist (as at least one resource
record, of any type).

	prereq nxrrset domain-name class type

	This command requires that no resource record exist of the specified type,
class, and domain-name. If class is omitted, IN (Internet)
is assumed.

	prereq yxrrset domain-name class type

	This command requires that a resource record of the specified type,
class and domain-name exist. If class is omitted, IN
(internet) is assumed.

	prereq yxrrset domain-name class type data

	With this command, the data from each set of prerequisites of this form sharing a
common type, class, and domain-name are combined to form
a set of RRs. This set of RRs must exactly match the set of RRs
existing in the zone at the given type, class, and
domain-name. The data are written in the standard text
representation of the resource record’s RDATA.

	update delete domain-name ttl class type data

	This command deletes any resource records named domain-name. If type and
data are provided, only matching resource records are removed.
The Internet class is assumed if class is not supplied. The
ttl is ignored, and is only allowed for compatibility.

	update add domain-name ttl class type data

	This command adds a new resource record with the specified ttl, class, and
data.

	show

	This command displays the current message, containing all of the prerequisites and
updates specified since the last send.

	send

	This command sends the current message. This is equivalent to entering a blank
line.

	answer

	This command displays the answer.

	debug

	This command turns on debugging.

	version

	This command prints the version number.

	help

	This command prints a list of commands.

Lines beginning with a semicolon (;) are comments and are ignored.

Examples

The examples below show how nsupdate can be used to insert and
delete resource records from the example.com zone. Notice that the
input in each example contains a trailing blank line, so that a group of
commands is sent as one dynamic update request to the primary name
server for example.com.

nsupdate
> update delete oldhost.example.com A
> update add newhost.example.com 86400 A 172.16.1.1
> send

Any A records for oldhost.example.com are deleted, and an A record
for newhost.example.com with IP address 172.16.1.1 is added. The
newly added record has a TTL of 1 day (86400 seconds).

nsupdate
> prereq nxdomain nickname.example.com
> update add nickname.example.com 86400 CNAME somehost.example.com
> send

The prerequisite condition tells the name server to verify that there are
no resource records of any type for nickname.example.com. If there
are, the update request fails. If this name does not exist, a CNAME for
it is added. This ensures that when the CNAME is added, it cannot
conflict with the long-standing rule in RFC 1034 [https://tools.ietf.org/html/rfc1034.html] that a name must not
exist as any other record type if it exists as a CNAME. (The rule has
been updated for DNSSEC in RFC 2535 [https://tools.ietf.org/html/rfc2535.html] to allow CNAMEs to have RRSIG,
DNSKEY, and NSEC records.)

Files

	/etc/resolv.conf

	Used to identify the default name server

	/var/run/named/session.key

	Sets the default TSIG key for use in local-only mode

	K{name}.+157.+{random}.key

	Base-64 encoding of the HMAC-MD5 key created by dnssec-keygen.

	K{name}.+157.+{random}.private

	Base-64 encoding of the HMAC-MD5 key created by dnssec-keygen.

See Also

RFC 2136 [https://tools.ietf.org/html/rfc2136.html], RFC 3007 [https://tools.ietf.org/html/rfc3007.html], RFC 2104 [https://tools.ietf.org/html/rfc2104.html], RFC 2845 [https://tools.ietf.org/html/rfc2845.html], RFC 1034 [https://tools.ietf.org/html/rfc1034.html], RFC 2535 [https://tools.ietf.org/html/rfc2535.html], RFC 2931 [https://tools.ietf.org/html/rfc2931.html],
named(8), ddns-confgen(8), dnssec-keygen(8).

Bugs

The TSIG key is redundantly stored in two separate files. This is a
consequence of nsupdate using the DST library for its cryptographic
operations, and may change in future releases.

pkcs11-destroy - destroy PKCS#11 objects

Synopsis

pkcs11-destroy [-m module] [-s slot] [-i ID] [-l label] [-p PIN] [-w seconds]

Description

pkcs11-destroy destroys keys stored in a PKCS#11 device, identified
by their ID or label.

Matching keys are displayed before being destroyed. By default, there is
a five-second delay to allow the user to interrupt the process before
the destruction takes place.

Options

	-m module

	This option specifies the PKCS#11 provider module. This must be the full path to a
shared library object implementing the PKCS#11 API for the device.

	-s slot

	This option opens the session with the given PKCS#11 slot. The default is slot 0.

	-i ID

	This option destroys keys with the given object ID.

	-l label

	This option destroys keys with the given label.

	-p PIN

	This option specifies the PIN for the device. If no PIN is provided on the command
line, pkcs11-destroy prompts for it.

	-w seconds

	This option specifies how long, in seconds, to pause before carrying out key destruction. The
default is 5 seconds. If set to 0, destruction is
immediate.

See Also

pkcs11-keygen(8), pkcs11-list(8), pkcs11-tokens(8)

pkcs11-keygen - generate keys on a PKCS#11 device

Synopsis

pkcs11-keygen [-a algorithm] [-b keysize] [-e] [-i id] [-m module] [-P] [-p PIN] [-q] [-S] [-s slot] label

Description

pkcs11-keygen causes a PKCS#11 device to generate a new key pair
with the given label (which must be unique) and with keysize
bits of prime.

Options

	-a algorithm

	This option specifies the key algorithm class: supported classes are RSA, DSA, DH,
ECC, and ECX. In addition to these strings, the algorithm can be
specified as a DNSSEC signing algorithm to be used with this
key; for example, NSEC3RSASHA1 maps to RSA, ECDSAP256SHA256 maps to
ECC, and ED25519 to ECX. The default class is RSA.

	-b keysize

	This option creates the key pair with keysize bits of prime. For ECC keys, the
only valid values are 256 and 384, and the default is 256. For ECX
keys, the only valid values are 256 and 456, and the default is 256.

	-e

	For RSA keys only, this option specifies use of a large exponent.

	-i id

	This option creates key objects with id. The ID is either an unsigned short 2-byte
or an unsigned long 4-byte number.

	-m module

	This option specifies the PKCS#11 provider module. This must be the full path to a
shared library object implementing the PKCS#11 API for the device.

	-P

	This option sets the new private key to be non-sensitive and extractable, and
allows the private key data to be read from the PKCS#11 device. The
default is for private keys to be sensitive and non-extractable.

	-p PIN

	This option specifies the PIN for the device. If no PIN is provided on the command
line, pkcs11-keygen prompts for it.

	-q

	This option sets quiet mode, which suppresses unnecessary output.

	-S

	For Diffie-Hellman (DH) keys only, this option specifies use of a special prime of 768-, 1024-,
or 1536-bit size and base (AKA generator) 2. If not specified, bit
size defaults to 1024.

	-s slot

	This option opens the session with the given PKCS#11 slot. The default is slot 0.

See Also

pkcs11-destroy(8), pkcs11-list(8), pkcs11-tokens(8), dnssec-keyfromlabel(8)

pkcs11-list - list PKCS#11 objects

pkcs11-list [-P] [-m module] [-s slot] [-i ID] [-l label] [-p PIN]

Description

pkcs11-list lists the PKCS#11 objects with ID or label or, by
default, all objects. The object class, label, and ID are displayed for
all keys. For private or secret keys, the extractability attribute is
also displayed, as either true, false, or never.

Options

	-P

	This option lists only the public objects. (Note that on some PKCS#11 devices, all
objects are private.)

	-m module

	This option specifies the PKCS#11 provider module. This must be the full path to a
shared library object implementing the PKCS#11 API for the device.

	-s slot

	This option opens the session with the given PKCS#11 slot. The default is slot 0.

	-i ID

	This option lists only key objects with the given object ID.

	-l label

	This option lists only key objects with the given label.

	-p PIN

	This option specifies the PIN for the device. If no PIN is provided on the command
line, pkcs11-list prompts for it.

See Also

pkcs11-destroy(8), pkcs11-keygen(8), pkcs11-tokens(8)

pkcs11-tokens - list PKCS#11 available tokens

Synopsis

pkcs11-tokens [-m module] [-v]

Description

pkcs11-tokens lists the PKCS#11 available tokens with defaults from
the slot/token scan performed at application initialization.

Options

	-m module

	This option specifies the PKCS#11 provider module. This must be the full path to a
shared library object implementing the PKCS#11 API for the device.

	-v

	This option makes the PKCS#11 libisc initialization verbose.

See Also

pkcs11-destroy(8), pkcs11-keygen(8), pkcs11-list(8)

rndc-confgen - rndc key generation tool

Synopsis

rndc-confgen [-a] [-A algorithm] [-b keysize] [-c keyfile] [-h] [-k keyname] [-p port] [-s address] [-t chrootdir] [-u user]

Description

rndc-confgen generates configuration files for rndc. It can be
used as a convenient alternative to writing the rndc.conf file and
the corresponding controls and key statements in named.conf
by hand. Alternatively, it can be run with the -a option to set up a
rndc.key file and avoid the need for a rndc.conf file and a
controls statement altogether.

Options

	-a

	This option sets automatic rndc configuration, which creates a file rndc.key
in /etc (or a different sysconfdir specified when BIND
was built) that is read by both rndc and named on startup.
The rndc.key file defines a default command channel and
authentication key allowing rndc to communicate with named on
the local host with no further configuration.

If a more elaborate configuration than that generated by
rndc-confgen -a is required, for example if rndc is to be used
remotely, run rndc-confgen without the -a option
and set up rndc.conf and named.conf as directed.

	-A algorithm

	This option specifies the algorithm to use for the TSIG key. Available choices
are: hmac-md5, hmac-sha1, hmac-sha224, hmac-sha256, hmac-sha384, and
hmac-sha512. The default is hmac-sha256.

	-b keysize

	This option specifies the size of the authentication key in bits. The size must be between
1 and 512 bits; the default is the hash size.

	-c keyfile

	This option is used with the -a option to specify an alternate location for
rndc.key.

	-h

	This option prints a short summary of the options and arguments to
rndc-confgen.

	-k keyname

	This option specifies the key name of the rndc authentication key. This must be a
valid domain name. The default is rndc-key.

	-p port

	This option specifies the command channel port where named listens for
connections from rndc. The default is 953.

	-q

	This option prevets printing the written path in automatic configuration mode.

	-s address

	This option specifies the IP address where named listens for command-channel
connections from rndc. The default is the loopback address
127.0.0.1.

	-t chrootdir

	This option is used with the -a option to specify a directory where named
runs chrooted. An additional copy of the rndc.key is
written relative to this directory, so that it is found by the
chrooted named.

	-u user

	This option is used with the -a option to set the owner of the generated rndc.key file.
If -t is also specified, only the file in the chroot
area has its owner changed.

Examples

To allow rndc to be used with no manual configuration, run:

rndc-confgen -a

To print a sample rndc.conf file and the corresponding controls and
key statements to be manually inserted into named.conf, run:

rndc-confgen

See Also

rndc(8), rndc.conf(5), named(8), BIND 9 Administrator Reference Manual.

rndc.conf - rndc configuration file

Synopsis

rndc.conf

Description

rndc.conf is the configuration file for rndc, the BIND 9 name
server control utility. This file has a similar structure and syntax to
named.conf. Statements are enclosed in braces and terminated with a
semi-colon. Clauses in the statements are also semi-colon terminated.
The usual comment styles are supported:

C style: /* */

C++ style: // to end of line

Unix style: # to end of line

rndc.conf is much simpler than named.conf. The file uses three
statements: an options statement, a server statement, and a key
statement.

The options statement contains five clauses. The default-server
clause is followed by the name or address of a name server. This host
is used when no name server is given as an argument to rndc.
The default-key clause is followed by the name of a key, which is
identified by a key statement. If no keyid is provided on the
rndc command line, and no key clause is found in a matching
server statement, this default key is used to authenticate the
server’s commands and responses. The default-port clause is followed
by the port to connect to on the remote name server. If no port
option is provided on the rndc command line, and no port clause is
found in a matching server statement, this default port is used
to connect. The default-source-address and
default-source-address-v6 clauses can be used to set the IPv4
and IPv6 source addresses respectively.

After the server keyword, the server statement includes a string
which is the hostname or address for a name server. The statement has
three possible clauses: key, port, and addresses. The key
name must match the name of a key statement in the file. The port number
specifies the port to connect to. If an addresses clause is supplied,
these addresses are used instead of the server name. Each address
can take an optional port. If an source-address or
source-address-v6 is supplied, it is used to specify the
IPv4 and IPv6 source address, respectively.

The key statement begins with an identifying string, the name of the
key. The statement has two clauses. algorithm identifies the
authentication algorithm for rndc to use; currently only HMAC-MD5
(for compatibility), HMAC-SHA1, HMAC-SHA224, HMAC-SHA256 (default),
HMAC-SHA384, and HMAC-SHA512 are supported. This is followed by a secret
clause which contains the base-64 encoding of the algorithm’s
authentication key. The base-64 string is enclosed in double quotes.

There are two common ways to generate the base-64 string for the secret.
The BIND 9 program rndc-confgen can be used to generate a random
key, or the mmencode program, also known as mimencode, can be
used to generate a base-64 string from known input. mmencode does
not ship with BIND 9 but is available on many systems. See the Example
section for sample command lines for each.

Example

options {
 default-server localhost;
 default-key samplekey;
};

server localhost {
 key samplekey;
};

server testserver {
 key testkey;
 addresses { localhost port 5353; };
};

key samplekey {
 algorithm hmac-sha256;
 secret "6FMfj43Osz4lyb24OIe2iGEz9lf1llJO+lz";
};

key testkey {
 algorithm hmac-sha256;
 secret "R3HI8P6BKw9ZwXwN3VZKuQ==";
};

In the above example, rndc by default uses the server at
localhost (127.0.0.1) and the key called “samplekey”. Commands to the
localhost server use the “samplekey” key, which must also be defined
in the server’s configuration file with the same name and secret. The
key statement indicates that “samplekey” uses the HMAC-SHA256 algorithm
and its secret clause contains the base-64 encoding of the HMAC-SHA256
secret enclosed in double quotes.

If rndc -s testserver is used, then rndc connects to the server
on localhost port 5353 using the key “testkey”.

To generate a random secret with rndc-confgen:

rndc-confgen

A complete rndc.conf file, including the randomly generated key,
is written to the standard output. Commented-out key and
controls statements for named.conf are also printed.

To generate a base-64 secret with mmencode:

echo "known plaintext for a secret" | mmencode

Name Server Configuration

The name server must be configured to accept rndc connections and to
recognize the key specified in the rndc.conf file, using the
controls statement in named.conf. See the sections on the
controls statement in the BIND 9 Administrator Reference Manual for
details.

See Also

rndc(8), rndc-confgen(8), mmencode(1), BIND 9 Administrator Reference Manual.

rndc - name server control utility

Synopsis

rndc [-b source-address] [-c config-file] [-k key-file] [-s server] [-p port] [-q] [-r] [-V] [-y key_id] [[-4] | [-6]] {command}

Description

rndc controls the operation of a name server; it supersedes the
ndc utility. If rndc is
invoked with no command line options or arguments, it prints a short
summary of the supported commands and the available options and their
arguments.

rndc communicates with the name server over a TCP connection,
sending commands authenticated with digital signatures. In the current
versions of rndc and named, the only supported authentication
algorithms are HMAC-MD5 (for compatibility), HMAC-SHA1, HMAC-SHA224,
HMAC-SHA256 (default), HMAC-SHA384, and HMAC-SHA512. They use a shared
secret on each end of the connection, which provides TSIG-style
authentication for the command request and the name server’s response.
All commands sent over the channel must be signed by a key_id known to
the server.

rndc reads a configuration file to determine how to contact the name
server and decide what algorithm and key it should use.

Options

	-4

	This option indicates use of IPv4 only.

	-6

	This option indicates use of IPv6 only.

	-b source-address

	This option indicates source-address as the source address for the connection to the
server. Multiple instances are permitted, to allow setting of both the
IPv4 and IPv6 source addresses.

	-c config-file

	This option indicates config-file as the configuration file instead of the default,
/etc/rndc.conf.

	-k key-file

	This option indicates key-file as the key file instead of the default,
/etc/rndc.key. The key in /etc/rndc.key is used to
authenticate commands sent to the server if the config-file does not
exist.

	-s server

	server is the name or address of the server which matches a server
statement in the configuration file for rndc. If no server is
supplied on the command line, the host named by the default-server
clause in the options statement of the rndc configuration file
is used.

	-p port

	This option instructs BIND 9 to send commands to TCP port port instead of its default control
channel port, 953.

	-q

	This option sets quiet mode, where message text returned by the server is not printed
unless there is an error.

	-r

	This option instructs rndc to print the result code returned by named
after executing the requested command (e.g., ISC_R_SUCCESS,
ISC_R_FAILURE, etc.).

	-V

	This option enables verbose logging.

	-y key_id

	This option indicates use of the key key_id from the configuration file. For control message validation to succeed, key_id must be known
by named with the same algorithm and secret string. If no key_id is specified,
rndc first looks for a key clause in the server statement of
the server being used, or if no server statement is present for that
host, then in the default-key clause of the options statement. Note that
the configuration file contains shared secrets which are used to send
authenticated control commands to name servers, and should therefore
not have general read or write access.

Commands

A list of commands supported by rndc can be seen by running rndc
without arguments.

Currently supported commands are:

	addzone zone [class [view]] configuration

	This command adds a zone while the server is running. This command requires the
allow-new-zones option to be set to yes. The configuration
string specified on the command line is the zone configuration text
that would ordinarily be placed in named.conf.

The configuration is saved in a file called viewname.nzf (or, if
named is compiled with liblmdb, an LMDB database file called
viewname.nzd). viewname is the name of the view, unless the view
name contains characters that are incompatible with use as a file
name, in which case a cryptographic hash of the view name is used
instead. When named is restarted, the file is loaded into
the view configuration so that zones that were added can persist
after a restart.

This sample addzone command adds the zone example.com to
the default view:

$ \ rndc addzone example.com '{ type master; file "example.com.db"; };'

(Note the brackets around and semi-colon after the zone configuration
text.)

See also rndc delzone and rndc modzone.

	delzone [-clean] zone [class [view]]

	This command deletes a zone while the server is running.

If the -clean argument is specified, the zone’s master file (and
journal file, if any) are deleted along with the zone. Without
the -clean option, zone files must be deleted manually. (If the
zone is of type secondary or stub, the files needing to be removed
are reported in the output of the rndc delzone command.)

If the zone was originally added via rndc addzone, then it is
removed permanently. However, if it was originally configured in
named.conf, then that original configuration remains in place;
when the server is restarted or reconfigured, the zone is
recreated. To remove it permanently, it must also be removed from
named.conf.

See also rndc addzone and rndc modzone.

	dnssec [-status zone [class [view]]

	Show the DNSSEC signing state for the specified zone. Requires the
zone to have a “dnssec-policy”.

	dnstap (-reopen | -roll [number])

	This command closes and re-opens DNSTAP output files. rndc dnstap -reopen allows
the output file to be renamed externally, so that named can
truncate and re-open it. rndc dnstap -roll causes the output file
to be rolled automatically, similar to log files. The most recent
output file has “.0” appended to its name; the previous most recent
output file is moved to “.1”, and so on. If number is specified, then
the number of backup log files is limited to that number.

	dumpdb [-all | -cache | -zones | -adb | -bad | -fail] [view …]

	This command dumps the server’s caches (default) and/or zones to the dump file for
the specified views. If no view is specified, all views are dumped.
(See the dump-file option in the BIND 9 Administrator Reference
Manual.)

	flush

	This command flushes the server’s cache.

	flushname name [view]

	This command flushes the given name from the view’s DNS cache and, if applicable,
from the view’s nameserver address database, bad server cache, and
SERVFAIL cache.

	flushtree name [view]

	This command flushes the given name, and all of its subdomains, from the view’s
DNS cache, address database, bad server cache, and SERVFAIL cache.

	freeze [zone [class [view]]]

	This command suspends updates to a dynamic zone. If no zone is specified, then all
zones are suspended. This allows manual edits to be made to a zone
normally updated by dynamic update, and causes changes in the
journal file to be synced into the master file. All dynamic update
attempts are refused while the zone is frozen.

See also rndc thaw.

	halt [-p]

	This command stops the server immediately. Recent changes made through dynamic
update or IXFR are not saved to the master files, but are rolled
forward from the journal files when the server is restarted. If
-p is specified, named’s process ID is returned. This allows
an external process to determine when named has completed
halting.

See also rndc stop.

	loadkeys [zone [class [view]]]

	This command fetches all DNSSEC keys for the given zone from the key directory. If
they are within their publication period, they are merged into the
zone’s DNSKEY RRset. Unlike rndc sign, however, the zone is not
immediately re-signed by the new keys, but is allowed to
incrementally re-sign over time.

This command requires that the zone be configured with a dnssec-policy, or
that the auto-dnssec zone option be set to maintain, and also requires the
zone to be configured to allow dynamic DNS. (See “Dynamic Update Policies” in
the Administrator Reference Manual for more details.)

	managed-keys (status | refresh | sync | destroy) [class [view]]

	This command inspects and controls the “managed-keys” database which handles
RFC 5011 [https://tools.ietf.org/html/rfc5011.html] DNSSEC trust anchor maintenance. If a view is specified, these
commands are applied to that view; otherwise, they are applied to all
views.

	When run with the status keyword, this prints the current status of
the managed-keys database.

	When run with the refresh keyword, this forces an immediate refresh
query to be sent for all the managed keys, updating the
managed-keys database if any new keys are found, without waiting
the normal refresh interval.

	When run with the sync keyword, this forces an immediate dump of
the managed-keys database to disk (in the file
managed-keys.bind or (viewname.mkeys). This synchronizes
the database with its journal file, so that the database’s current
contents can be inspected visually.

	When run with the destroy keyword, the managed-keys database
is shut down and deleted, and all key maintenance is terminated.
This command should be used only with extreme caution.

Existing keys that are already trusted are not deleted from
memory; DNSSEC validation can continue after this command is used.
However, key maintenance operations cease until named is
restarted or reconfigured, and all existing key maintenance states
are deleted.

Running rndc reconfig or restarting named immediately
after this command causes key maintenance to be reinitialized
from scratch, just as if the server were being started for the
first time. This is primarily intended for testing, but it may
also be used, for example, to jumpstart the acquisition of new
keys in the event of a trust anchor rollover, or as a brute-force
repair for key maintenance problems.

	modzone zone [class [view]] configuration

	This command modifies the configuration of a zone while the server is running. This
command requires the allow-new-zones option to be set to yes.
As with addzone, the configuration string specified on the
command line is the zone configuration text that would ordinarily be
placed in named.conf.

If the zone was originally added via rndc addzone, the
configuration changes are recorded permanently and are still
in effect after the server is restarted or reconfigured. However, if
it was originally configured in named.conf, then that original
configuration remains in place; when the server is restarted or
reconfigured, the zone reverts to its original configuration. To
make the changes permanent, it must also be modified in
named.conf.

See also rndc addzone and rndc delzone.

	notify zone [class [view]]

	This command resends NOTIFY messages for the zone.

	notrace

	This command sets the server’s debugging level to 0.

See also rndc trace.

	nta [(-class class | -dump | -force | -remove | -lifetime duration)] domain [view]

	This command sets a DNSSEC negative trust anchor (NTA) for domain, with a
lifetime of duration. The default lifetime is configured in
named.conf via the nta-lifetime option, and defaults to one
hour. The lifetime cannot exceed one week.

A negative trust anchor selectively disables DNSSEC validation for
zones that are known to be failing because of misconfiguration rather
than an attack. When data to be validated is at or below an active
NTA (and above any other configured trust anchors), named
aborts the DNSSEC validation process and treats the data as insecure
rather than bogus. This continues until the NTA’s lifetime has
elapsed.

NTAs persist across restarts of the named server. The NTAs for a
view are saved in a file called name.nta, where name is the name
of the view; if it contains characters that are incompatible with
use as a file name, a cryptographic hash is generated from the name of
the view.

An existing NTA can be removed by using the -remove option.

An NTA’s lifetime can be specified with the -lifetime option.
TTL-style suffixes can be used to specify the lifetime in seconds,
minutes, or hours. If the specified NTA already exists, its lifetime
is updated to the new value. Setting lifetime to zero is
equivalent to -remove.

If -dump is used, any other arguments are ignored and a list
of existing NTAs is printed. Note that this may include NTAs that are
expired but have not yet been cleaned up.

Normally, named periodically tests to see whether data below
an NTA can now be validated (see the nta-recheck option in the
Administrator Reference Manual for details). If data can be
validated, then the NTA is regarded as no longer necessary and is
allowed to expire early. The -force parameter overrides this behavior
and forces an NTA to persist for its entire lifetime, regardless of
whether data could be validated if the NTA were not present.

The view class can be specified with -class. The default is class
IN, which is the only class for which DNSSEC is currently
supported.

All of these options can be shortened, i.e., to -l, -r,
-d, -f, and -c.

Unrecognized options are treated as errors. To refer to a domain or
view name that begins with a hyphen, use a double-hyphen (–) on the
command line to indicate the end of options.

	querylog [(on | off)]

	This command enables or disables query logging. For backward compatibility, this
command can also be used without an argument to toggle query logging
on and off.

Query logging can also be enabled by explicitly directing the
queries category to a channel in the logging section
of named.conf, or by specifying querylog yes; in the
options section of named.conf.

	reconfig

	This command reloads the configuration file and loads new zones, but does not reload
existing zone files even if they have changed. This is faster than a
full reload when there is a large number of zones, because it
avoids the need to examine the modification times of the zone files.

	recursing

	This command dumps the list of queries named is currently recursing on, and the
list of domains to which iterative queries are currently being sent.
The second list includes the number of fetches currently active for
the given domain, and how many have been passed or dropped because of
the fetches-per-zone option.

	refresh zone [class [view]]

	This command schedules zone maintenance for the given zone.

	reload

	This command reloads the configuration file and zones.

	reload zone [class [view]]

	This command reloads the given zone.

	retransfer zone [class [view]]

	This command retransfers the given secondary zone from the primary server.

If the zone is configured to use inline-signing, the signed
version of the zone is discarded; after the retransfer of the
unsigned version is complete, the signed version is regenerated
with new signatures.

	scan

	This command scans the list of available network interfaces for changes, without
performing a full reconfig or waiting for the
interface-interval timer.

	secroots [-] [view …]

	This command dumps the security roots (i.e., trust anchors configured via
trust-anchors, or the managed-keys or trusted-keys statements
[both deprecated], or dnssec-validation auto) and negative trust anchors
for the specified views. If no view is specified, all views are
dumped. Security roots indicate whether they are configured as trusted
keys, managed keys, or initializing managed keys (managed keys that have not
yet been updated by a successful key refresh query).

If the first argument is -, then the output is returned via the
rndc response channel and printed to the standard output.
Otherwise, it is written to the secroots dump file, which defaults to
named.secroots, but can be overridden via the secroots-file
option in named.conf.

See also rndc managed-keys.

	serve-stale (on | off | reset | status) [class [view]]

	This command enables, disables, resets, or reports the current status of the serving
of stale answers as configured in named.conf.

If serving of stale answers is disabled by rndc-serve-stale off,
then it remains disabled even if named is reloaded or
reconfigured. rndc serve-stale reset restores the setting as
configured in named.conf.

rndc serve-stale status reports whether serving of stale
answers is currently enabled, disabled by the configuration, or
disabled by rndc. It also reports the values of
stale-answer-ttl and max-stale-ttl.

	showzone zone [class [view]]

	This command prints the configuration of a running zone.

See also rndc zonestatus.

	sign zone [class [view]]

	This command fetches all DNSSEC keys for the given zone from the key directory (see
the key-directory option in the BIND 9 Administrator Reference
Manual). If they are within their publication period, they are merged into
the zone’s DNSKEY RRset. If the DNSKEY RRset is changed, then the
zone is automatically re-signed with the new key set.

This command requires that the zone be configured with a dnssec-policy, or
that the auto-dnssec zone option be set to allow or maintain,
and also requires the zone to be configured to allow dynamic DNS. (See
“Dynamic Update Policies” in the BIND 9 Administrator Reference Manual for more
details.)

See also rndc loadkeys.

	signing [(-list | -clear keyid/algorithm | -clear all | -nsec3param (parameters | none) | -serial value) zone [class [view]]

	This command lists, edits, or removes the DNSSEC signing-state records for the
specified zone. The status of ongoing DNSSEC operations, such as
signing or generating NSEC3 chains, is stored in the zone in the form
of DNS resource records of type sig-signing-type.
rndc signing -list converts these records into a human-readable
form, indicating which keys are currently signing or have finished
signing the zone, and which NSEC3 chains are being created or
removed.

rndc signing -clear can remove a single key (specified in the
same format that rndc signing -list uses to display it), or all
keys. In either case, only completed keys are removed; any record
indicating that a key has not yet finished signing the zone is
retained.

rndc signing -nsec3param sets the NSEC3 parameters for a zone.
This is the only supported mechanism for using NSEC3 with
inline-signing zones. Parameters are specified in the same format
as an NSEC3PARAM resource record: hash algorithm, flags, iterations,
and salt, in that order.

Currently, the only defined value for hash algorithm is 1,
representing SHA-1. The flags may be set to 0 or 1,
depending on whether the opt-out bit in the NSEC3
chain should be set. iterations defines the number of additional times to apply
the algorithm when generating an NSEC3 hash. The salt is a string
of data expressed in hexadecimal, a hyphen (-‘) if no salt is to be
used, or the keyword ``auto`, which causes named to generate a
random 64-bit salt.

So, for example, to create an NSEC3 chain using the SHA-1 hash
algorithm, no opt-out flag, 10 iterations, and a salt value of
“FFFF”, use: rndc signing -nsec3param 1 0 10 FFFF zone. To set
the opt-out flag, 15 iterations, and no salt, use:
rndc signing -nsec3param 1 1 15 - zone.

rndc signing -nsec3param none removes an existing NSEC3 chain and
replaces it with NSEC.

rndc signing -serial value sets the serial number of the zone to
value. If the value would cause the serial number to go backwards, it
is rejected. The primary use of this parameter is to set the serial number on inline
signed zones.

	stats

	This command writes server statistics to the statistics file. (See the
statistics-file option in the BIND 9 Administrator Reference
Manual.)

	status

	This command displays the status of the server. Note that the number of zones includes
the internal bind/CH zone and the default ./IN hint zone, if
there is no explicit root zone configured.

	stop -p

	This command stops the server, making sure any recent changes made through dynamic
update or IXFR are first saved to the master files of the updated
zones. If -p is specified, named(8)`'s process ID is returned.
This allows an external process to determine when ``named has
completed stopping.

See also rndc halt.

	sync -clean [zone [class [view]]]

	This command syncs changes in the journal file for a dynamic zone to the master
file. If the “-clean” option is specified, the journal file is also
removed. If no zone is specified, then all zones are synced.

	tcp-timeouts [initial idle keepalive advertised]

	When called without arguments, this command displays the current values of the
tcp-initial-timeout, tcp-idle-timeout,
tcp-keepalive-timeout, and tcp-advertised-timeout options.
When called with arguments, these values are updated. This allows an
administrator to make rapid adjustments when under a
denial-of-service (DoS) attack. See the descriptions of these options in the BIND 9
Administrator Reference Manual for details of their use.

	thaw [zone [class [view]]]

	This command enables updates to a frozen dynamic zone. If no zone is specified,
then all frozen zones are enabled. This causes the server to reload
the zone from disk, and re-enables dynamic updates after the load has
completed. After a zone is thawed, dynamic updates are no longer
refused. If the zone has changed and the ixfr-from-differences
option is in use, the journal file is updated to reflect
changes in the zone. Otherwise, if the zone has changed, any existing
journal file is removed.

See also rndc freeze.

	trace

	This command increments the server’s debugging level by one.

	trace level

	This command sets the server’s debugging level to an explicit value.

See also rndc notrace.

	tsig-delete keyname [view]

	This command deletes a given TKEY-negotiated key from the server. This does not
apply to statically configured TSIG keys.

	tsig-list

	This command lists the names of all TSIG keys currently configured for use by
named in each view. The list includes both statically configured keys and
dynamic TKEY-negotiated keys.

	validation (on | off | status) [view …]``

	This command enables, disables, or checks the current status of DNSSEC validation. By
default, validation is enabled.

The cache is flushed when validation is turned on or off to avoid using data
that might differ between states.

	zonestatus zone [class [view]]

	This command displays the current status of the given zone, including the master
file name and any include files from which it was loaded, when it was
most recently loaded, the current serial number, the number of nodes,
whether the zone supports dynamic updates, whether the zone is DNSSEC
signed, whether it uses automatic DNSSEC key management or inline
signing, and the scheduled refresh or expiry times for the zone.

See also rndc showzone.

rndc commands that specify zone names, such as reload,
retransfer, or zonestatus, can be ambiguous when applied to zones
of type redirect. Redirect zones are always called ., and can be
confused with zones of type hint or with secondary copies of the root
zone. To specify a redirect zone, use the special zone name
-redirect, without a trailing period. (With a trailing period, this
would specify a zone called “-redirect”.)

Limitations

There is currently no way to provide the shared secret for a key_id
without using the configuration file.

Several error messages could be clearer.

See Also

rndc.conf(5), rndc-confgen(8),
named(8), named.conf(5), ndc(8), BIND 9 Administrator
Reference Manual.

Index

 A
 | D
 | F
 | I
 | K
 | N
 | P
 | R
 | S
 | Y

A

 	
 	acl_name

 	
 	address_match_list

D

 	
 	dialup_option

 	
 	domain_name

 	dotted_decimal

F

 	
 	fixedpoint

I

 	
 	ip4_addr

 	ip6_addr

 	ip_addr

 	
 	ip_dscp

 	ip_port

 	ip_prefix

K

 	
 	key_id

 	
 	key_list

N

 	
 	namelist

 	
 	number

P

 	
 	path_name

 	
 	port_list

 	primaries_list

R

 	
 	
 RFC

 	RFC 1033, [1], [2], [3]

 	RFC 1034, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21]

 	RFC 1035, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 	RFC 1101

 	RFC 1123, [1], [2]

 	RFC 1183

 	RFC 1464

 	RFC 1521

 	RFC 1535

 	RFC 1536

 	RFC 1537

 	RFC 1591

 	RFC 1706

 	RFC 1712

 	RFC 1713

 	RFC 1750

 	RFC 1794

 	RFC 1876

 	RFC 1912

 	RFC 1918, [1], [2], [3], [4], [5]

 	RFC 1982, [1]

 	RFC 1995, [1]

 	RFC 1996, [1]

 	RFC 2010

 	RFC 2052

 	RFC 2065

 	RFC 2104

 	RFC 2136, [1], [2], [3]

 	RFC 2137

 	RFC 2163

 	RFC 2168

 	RFC 2181

 	RFC 2219

 	RFC 2230

 	RFC 2240

 	RFC 2308, [1]

 	RFC 2317, [1]

 	RFC 2345

 	RFC 2352

 	RFC 2535, [1], [2], [3], [4], [5], [6], [7]

 	RFC 2536

 	RFC 2537

 	RFC 2538

 	RFC 2539, [1], [2]

 	RFC 2540

 	RFC 2606

 	RFC 2671

 	RFC 2672

 	RFC 2673

 	RFC 2782

 	RFC 2825

 	RFC 2826

 	RFC 2845, [1], [2], [3], [4], [5]

 	RFC 2874

 	RFC 2915

 	RFC 2929

 	RFC 2930, [1], [2]

 	RFC 2931, [1], [2], [3]

 	RFC 3007, [1], [2]

 	RFC 3008

 	RFC 3056

 	RFC 3071

 	RFC 3090

 	RFC 3110

 	RFC 3123, [1]

 	RFC 3152

 	RFC 3225

 	RFC 3226

 	RFC 3258

 	RFC 3363, [1], [2], [3]

 	RFC 3445

 	RFC 3490

 	RFC 3491

 	RFC 3492

 	RFC 3493, [1]

 	RFC 3496

 	RFC 3542, [1]

 	RFC 3548

 	RFC 3587

 	RFC 3596

 	RFC 3597, [1], [2], [3], [4]

 	RFC 3645, [1]

 	RFC 3655

 	RFC 3658, [1]

 	RFC 3755

 	RFC 3757

 	RFC 3833

 	RFC 3845

 	RFC 3901

 	RFC 4025

 	RFC 4033, [1], [2], [3]

 	RFC 4034, [1], [2], [3], [4], [5]

 	RFC 4035, [1], [2]

 	RFC 4074

 	RFC 4193

 	RFC 4255

 	RFC 4294

 	RFC 4343

 	RFC 4398

 	RFC 4408

 	RFC 4431, [1]

 	RFC 4470

 	RFC 4509, [1]

 	RFC 4592

 	RFC 4635

 	RFC 4641

 	RFC 4641#4.2.1.1

 	RFC 4641#4.2.1.2

 	RFC 4701

 	RFC 4892

 	RFC 4955

 	RFC 5001

 	RFC 5011, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]

 	RFC 5074

 	RFC 5155, [1], [2]

 	RFC 5452

 	RFC 5625

 	RFC 5702

 	RFC 5737

 	RFC 5936

 	RFC 5952

 	RFC 5966

 	RFC 6052, [1]

 	RFC 6147

 	RFC 6303

 	RFC 6594

 	RFC 6598

 	RFC 6604

 	RFC 6605, [1]

 	RFC 6672

 	RFC 6698

 	RFC 6725

 	RFC 6742

 	RFC 6781

 	RFC 6840

 	RFC 6844

 	RFC 6891, [1]

 	RFC 6944, [1]

 	RFC 7043

 	RFC 7129

 	RFC 7216

 	RFC 7314

 	RFC 7344, [1], [2], [3]

 	RFC 7477

 	RFC 7512

 	RFC 7553

 	RFC 7583

 	RFC 7706

 	RFC 7766

 	RFC 7793

 	RFC 7816

 	RFC 7828

 	RFC 7830

 	RFC 7929

 	RFC 8080

 	RFC 821

 	RFC 8482

 	RFC 8490

 	RFC 8624

 	RFC 8749

 	RFC 882

 	RFC 883

 	RFC 920

 	RFC 952

 	RFC 974

S

 	
 	size_or_percent

 	
 	size_spec

Y

 	
 	yes_or_no

	client

	Processing of client requests.

	cname

	Name servers that are skipped for being a CNAME rather than A/AAAA records.

	config

	Configuration file parsing and processing.

	database

	Messages relating to the databases used internally by the name server to store zone and cache data.

	default

	Logging options for those categories where no specific configuration has been defined.

	delegation-only

	Queries that have been forced to NXDOMAIN as the result of a delegation-only zone or a delegation-only in a forward, hint, or stub zone declaration.

	dispatch

	Dispatching of incoming packets to the server modules where they are to be processed.

	dnssec

	DNSSEC and TSIG protocol processing.

	dnstap

	The “dnstap” DNS traffic capture system.

	edns-disabled

	Log queries that have been forced to use plain DNS due to timeouts. This is often due to the remote servers not being RFC 1034 [https://tools.ietf.org/html/rfc1034.html]-compliant (not always returning FORMERR or similar to EDNS queries and other extensions to the DNS when they are not understood). In other words, this is targeted at servers that fail to respond to DNS queries that they don’t understand.

Note: the log message can also be due to packet loss. Before reporting servers for non-RFC 1034 [https://tools.ietf.org/html/rfc1034.html] compliance they should be re-tested to determine the nature of the non-compliance. This testing should prevent or reduce the number of false-positive reports.

Note: eventually named will have to stop treating such timeouts as due to RFC 1034 [https://tools.ietf.org/html/rfc1034.html] non-compliance and start treating it as plain packet loss. Falsely classifying packet loss as due to RFC 1034 [https://tools.ietf.org/html/rfc1034.html] non-compliance impacts DNSSEC validation, which requires EDNS for the DNSSEC records to be returned.

	general

	Catch-all for many things that still are not classified into categories.

	lame-servers

	Misconfigurations in remote servers, discovered by BIND 9 when trying to query those servers during resolution.

	network

	Network operations.

	notify

	The NOTIFY protocol.

	nsid

	NSID options received from upstream servers.

	queries

	Location where queries should be logged.

At startup, specifying the category queries also enables query logging unless the querylog option has been specified.

The query log entry first reports a client object identifier in @0x<hexadecimal-number> format. Next, it reports the client’s IP address and port number, and the query name, class, and type. Next, it reports whether the Recursion Desired flag was set (+ if set, - if not set), whether the query was signed (S), whether EDNS was in use along with the EDNS version number (E(#)), whether TCP was used (T), whether DO (DNSSEC Ok) was set (D), whether CD (Checking Disabled) was set (C), whether a valid DNS Server COOKIE was received (V), and whether a DNS COOKIE option without a valid Server COOKIE was present (K). After this, the destination address the query was sent to is reported. Finally, if any CLIENT-SUBNET option was present in the client query, it is included in square brackets in the format [ECS address/source/scope].

client 127.0.0.1#62536 (www.example.com):
query: www.example.com IN AAAA +SE
client ::1#62537 (www.example.net):
query: www.example.net IN AAAA -SE

The first part of this log message, showing the client address/port number and query name, is repeated in all subsequent log messages related to the same query.

	query-errors

	Information about queries that resulted in some failure.

	rate-limit

	Start, periodic, and final notices of the rate limiting of a stream of responses that are logged at info severity in this category. These messages include a hash value of the domain name of the response and the name itself, except when there is insufficient memory to record the name for the final notice. The final notice is normally delayed until about one minute after rate limiting stops. A lack of memory can hurry the final notice, which is indicated by an initial asterisk (*). Various internal events are logged at debug level 1 and higher.

Rate limiting of individual requests is logged in the query-errors category.

	resolver

	DNS resolution, such as the recursive lookups performed on behalf of clients by a caching name server.

	rpz

	Information about errors in response policy zone files, rewritten responses, and, at the highest debug levels, mere rewriting attempts.

	rpz-passthru

	Information about RPZ PASSTHRU policy activity. This category allows pre-approved policy activity to be logged into a dedicated channel.

	security

	Approval and denial of requests.

	serve-stale

	Indication of whether a stale answer is used following a resolver failure.

	spill

	Queries that have been terminated, either by dropping or responding with SERVFAIL, as a result of a fetchlimit quota being exceeded.

	trust-anchor-telemetry

	Trust-anchor-telemetry requests received by named.

	unmatched

	Messages that named was unable to determine the class of, or for which there was no matching view. A one-line summary is also logged to the client category. This category is best sent to a file or stderr; by default it is sent to the null channel.

	update

	Dynamic updates.

	update-security

	Approval and denial of update requests.

	xfer-in

	Zone transfers the server is receiving.

	xfer-out

	Zone transfers the server is sending.

	zoneload

	Loading of zones and creation of automatic empty zones.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 BIND 9 Administrator Reference Manual

 		
 Introduction

 		
 Scope of Document

 		
 Organization of This Document

 		
 Conventions Used in This Document

 		
 The Domain Name System (DNS)

 		
 DNS Fundamentals

 		
 Domains and Domain Names

 		
 Zones

 		
 Authoritative Name Servers

 		
 Caching Name Servers

 		
 Name Servers in Multiple Roles

 		
 BIND Resource Requirements

 		
 Hardware Requirements

 		
 CPU Requirements

 		
 Memory Requirements

 		
 Name Server-Intensive Environment Issues

 		
 Supported Operating Systems

 		
 Name Server Configuration

 		
 Sample Configurations

 		
 A Caching-only Name Server

 		
 An Authoritative-only Name Server

 		
 Load Balancing

 		
 Name Server Operations

 		
 Tools for Use With the Name Server Daemon

 		
 Signals

 		
 Plugins

 		
 Configuring Plugins

 		
 Developing Plugins

 		
 BIND 9 Configuration Reference

 		
 Configuration File Elements

 		
 Address Match Lists

 		
 Comment Syntax

 		
 Configuration File Grammar

 		
 acl Statement Grammar

 		
 acl Statement Definition and Usage

 		
 controls Statement Grammar

 		
 controls Statement Definition and Usage

 		
 include Statement Grammar

 		
 include Statement Definition and Usage

 		
 key Statement Grammar

 		
 key Statement Definition and Usage

 		
 logging Statement Grammar

 		
 logging Statement Definition and Usage

 		
 primaries Statement Grammar

 		
 primaries Statement Definition and Usage

 		
 options Statement Grammar

 		
 options Statement Definition and Usage

 		
 server Statement Grammar

 		
 server Statement Definition and Usage

 		
 statistics-channels Statement Grammar

 		
 statistics-channels Statement Definition and Usage

 		
 trust-anchors Statement Grammar

 		
 trust-anchors Statement Definition and Usage

 		
 managed-keys Statement Grammar

 		
 managed-keys Statement Definition and Usage

 		
 trusted-keys Statement Grammar

 		
 trusted-keys Statement Definition and Usage

 		
 view Statement Grammar

 		
 view Statement Definition and Usage

 		
 zone Statement Grammar

 		
 zone Statement Definition and Usage

 		
 Zone File

 		
 Types of Resource Records and When to Use Them

 		
 Discussion of MX Records

 		
 Setting TTLs

 		
 Inverse Mapping in IPv4

 		
 Other Zone File Directives

 		
 BIND Primary File Extension: the $GENERATE Directive

 		
 Additional File Formats

 		
 BIND 9 Statistics

 		
 The Statistics File

 		
 Statistics Counters

 		
 Advanced DNS Features

 		
 Notify

 		
 Dynamic Update

 		
 The Journal File

 		
 Incremental Zone Transfers (IXFR)

 		
 Split DNS

 		
 Example Split DNS Setup

 		
 TSIG

 		
 Generating a Shared Key

 		
 Loading a New Key

 		
 Instructing the Server to Use a Key

 		
 TSIG-Based Access Control

 		
 Errors

 		
 TKEY

 		
 SIG(0)

 		
 DNSSEC

 		
 Generating Keys

 		
 Signing the Zone

 		
 Configuring Servers for DNSSEC

 		
 DNSSEC, Dynamic Zones, and Automatic Signing

 		
 Converting From Insecure to Secure

 		
 Dynamic DNS Update Method

 		
 Fully Automatic Zone Signing

 		
 Private Type Records

 		
 DNSKEY Rollovers

 		
 Dynamic DNS Update Method

 		
 Automatic Key Rollovers

 		
 NSEC3PARAM Rollovers via UPDATE

 		
 Converting From NSEC to NSEC3

 		
 Converting From NSEC3 to NSEC

 		
 Converting From Secure to Insecure

 		
 Periodic Re-signing

 		
 NSEC3 and OPTOUT

 		
 Dynamic Trust Anchor Management

 		
 Validating Resolver

 		
 Authoritative Server

 		
 PKCS#11 (Cryptoki) Support

 		
 Prerequisites

 		
 Native PKCS#11

 		
 OpenSSL-based PKCS#11

 		
 PKCS#11 Tools

 		
 Using the HSM

 		
 Specifying the Engine on the Command Line

 		
 Running named With Automatic Zone Re-signing

 		
 Dynamically Loadable Zones (DLZ)

 		
 Configuring DLZ

 		
 Sample DLZ Driver

 		
 Dynamic Database (DynDB)

 		
 Configuring DynDB

 		
 Sample DynDB Module

 		
 Catalog Zones

 		
 Principle of Operation

 		
 Configuring Catalog Zones

 		
 Catalog Zone Format

 		
 IPv6 Support in BIND 9

 		
 Address Lookups Using AAAA Records

 		
 Address-to-Name Lookups Using Nibble Format

 		
 BIND 9 Security Considerations

 		
 Access Control Lists

 		
 Chroot and Setuid

 		
 The chroot Environment

 		
 Using the setuid Function

 		
 Dynamic Update Security

 		
 Troubleshooting

 		
 Common Problems

 		
 Itâ��s Not Working; How Can I Figure Out Whatâ��s Wrong?

 		
 EDNS Compliance Issues

 		
 Incrementing and Changing the Serial Number

 		
 Where Can I Get Help?

 		
 Release Notes

 		
 Introduction

 		
 Supported Platforms

 		
 Download

 		
 Notes for BIND 9.17.3

 		
 New Features

 		
 Feature Changes

 		
 Bug Fixes

 		
 Notes for BIND 9.17.2

 		
 Security Fixes

 		
 Known Issues

 		
 New Features

 		
 Feature Changes

 		
 Bug Fixes

 		
 Notes for BIND 9.17.1

 		
 Security Fixes

 		
 Known Issues

 		
 New Features

 		
 Feature Changes

 		
 Bug Fixes

 		
 Notes for BIND 9.17.0

 		
 Known Issues

 		
 New Features

 		
 Feature Changes

 		
 Bug Fixes

 		
 License

 		
 End of Life

 		
 Thank You

 		
 A Brief History of the DNS and BIND

 		
 General DNS Reference Information

 		
 IPv6 Addresses (AAAA)

 		
 Bibliography (and Suggested Reading)

 		
 Request for Comments (RFCs)

 		
 Internet Standards

 		
 Proposed Standards

 		
 Informational RFCs

 		
 Experimental RFCs

 		
 Best Current Practice RFCs

 		
 Historic RFCs

 		
 RFCs of Type â��Unknownâ��

 		
 Obsoleted and Unimplemented Experimental RFCs

 		
 RFCs No Longer Supported in BIND 9

 		
 Notes

 		
 Internet Drafts

 		
 Other Documents About BIND

 		
 Manual Pages

 		
 arpaname - translate IP addresses to the corresponding ARPA names

 		
 Synopsis

 		
 Description

 		
 See Also

 		
 ddns-confgen - ddns key generation tool

 		
 Synopsis

 		
 Description

 		
 Options

 		
 See Also

 		
 delv - DNS lookup and validation utility

 		
 Synopsis

 		
 Description

 		
 Simple Usage

 		
 Options

 		
 Query Options

 		
 Files

 		
 See Also

 		
 dig - DNS lookup utility

 		
 Synopsis

 		
 Description

 		
 Simple Usage

 		
 Options

 		
 Query Options

 		
 Multiple Queries

 		
 IDN Support

 		
 Files

 		
 See Also

 		
 Bugs

 		
 dnssec-cds - change DS records for a child zone based on CDS/CDNSKEY

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Exit Status

 		
 Examples

 		
 See Also

 		
 dnssec-dsfromkey - DNSSEC DS RR generation tool

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Example

 		
 Files

 		
 Caveat

 		
 See Also

 		
 dnssec-importkey - import DNSKEY records from external systems so they can be managed

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Timing Options

 		
 Files

 		
 See Also

 		
 dnssec-keyfromlabel - DNSSEC key generation tool

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Timing Options

 		
 Generated Key Files

 		
 See Also

 		
 dnssec-keygen: DNSSEC key generation tool

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Timing Options

 		
 Generated Keys

 		
 Example

 		
 See Also

 		
 dnssec-revoke - set the REVOKED bit on a DNSSEC key

 		
 Synopsis

 		
 Description

 		
 Options

 		
 See Also

 		
 dnssec-settime: set the key timing metadata for a DNSSEC key

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Timing Options

 		
 Key State Options

 		
 Printing Options

 		
 See Also

 		
 dnssec-signzone - DNSSEC zone signing tool

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Example

 		
 See Also

 		
 dnssec-verify - DNSSEC zone verification tool

 		
 Synopsis

 		
 Description

 		
 Options

 		
 See Also

 		
 dnstap-read - print dnstap data in human-readable form

 		
 Synopsis

 		
 Description

 		
 Options

 		
 See Also

 		
 filter-aaaa.so - filter AAAA in DNS responses when A is present

 		
 Synopsis

 		
 Description

 		
 Options

 		
 See Also

 		
 host - DNS lookup utility

 		
 Synopsis

 		
 Description

 		
 Options

 		
 IDN Support

 		
 Files

 		
 See Also

 		
 mdig - DNS pipelined lookup utility

 		
 Synopsis

 		
 Description

 		
 Anywhere Options

 		
 Global Options

 		
 Local Options

 		
 See Also

 		
 named-checkconf - named configuration file syntax checking tool

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Return Values

 		
 See Also

 		
 named-checkzone, named-compilezone - zone file validity checking or converting tool

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Return Values

 		
 See Also

 		
 named-journalprint - print zone journal in human-readable form

 		
 Synopsis

 		
 Description

 		
 See Also

 		
 named-nzd2nzf - convert an NZD database to NZF text format

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 See Also

 		
 named-rrchecker - syntax checker for individual DNS resource records

 		
 Synopsis

 		
 Description

 		
 Options

 		
 See Also

 		
 named.conf - configuration file for named

 		
 Synopsis

 		
 Description

 		
 Files

 		
 See Also

 		
 named - Internet domain name server

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Signals

 		
 Configuration

 		
 Files

 		
 See Also

 		
 nsec3hash - generate NSEC3 hash

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 See Also

 		
 nslookup - query Internet name servers interactively

 		
 Synopsis

 		
 Description

 		
 Arguments

 		
 Interactive Commands

 		
 Return Values

 		
 IDN Support

 		
 Files

 		
 See Also

 		
 nsupdate - dynamic DNS update utility

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Input Format

 		
 Examples

 		
 Files

 		
 See Also

 		
 Bugs

 		
 Synopsis

 		
 Description

 		
 Options

 		
 See Also

 		
 pkcs11-keygen - generate keys on a PKCS#11 device

 		
 Synopsis

 		
 Description

 		
 Options

 		
 See Also

 		
 pkcs11-list - list PKCS#11 objects

 		
 Description

 		
 Options

 		
 See Also

 		
 pkcs11-tokens - list PKCS#11 available tokens

 		
 Synopsis

 		
 Description

 		
 Options

 		
 See Also

 		
 rndc-confgen - rndc key generation tool

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Examples

 		
 See Also

 		
 rndc.conf - rndc configuration file

 		
 Synopsis

 		
 Description

 		
 Example

 		
 Name Server Configuration

 		
 See Also

 		
 rndc - name server control utility

 		
 Synopsis

 		
 Description

 		
 Options

 		
 Commands

 		
 Limitations

 		
 See Also

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

